与えられた極限値を求める問題です。具体的には、 $\lim_{n \to \infty} \frac{1}{\sqrt{n^2+2n} - \sqrt{n^2-2n}}$ を計算します。解析学極限有理化数列2025/7/311. 問題の内容与えられた極限値を求める問題です。具体的には、limn→∞1n2+2n−n2−2n\lim_{n \to \infty} \frac{1}{\sqrt{n^2+2n} - \sqrt{n^2-2n}}limn→∞n2+2n−n2−2n1を計算します。2. 解き方の手順まず、分母を有理化します。1n2+2n−n2−2n=n2+2n+n2−2n(n2+2n−n2−2n)(n2+2n+n2−2n)\frac{1}{\sqrt{n^2+2n} - \sqrt{n^2-2n}} = \frac{\sqrt{n^2+2n} + \sqrt{n^2-2n}}{(\sqrt{n^2+2n} - \sqrt{n^2-2n})(\sqrt{n^2+2n} + \sqrt{n^2-2n})}n2+2n−n2−2n1=(n2+2n−n2−2n)(n2+2n+n2−2n)n2+2n+n2−2n=n2+2n+n2−2n(n2+2n)−(n2−2n)= \frac{\sqrt{n^2+2n} + \sqrt{n^2-2n}}{(n^2+2n) - (n^2-2n)}=(n2+2n)−(n2−2n)n2+2n+n2−2n=n2+2n+n2−2n4n= \frac{\sqrt{n^2+2n} + \sqrt{n^2-2n}}{4n}=4nn2+2n+n2−2n=n2(1+2n)+n2(1−2n)4n= \frac{\sqrt{n^2(1+\frac{2}{n})} + \sqrt{n^2(1-\frac{2}{n})}}{4n}=4nn2(1+n2)+n2(1−n2)=n1+2n+n1−2n4n= \frac{n\sqrt{1+\frac{2}{n}} + n\sqrt{1-\frac{2}{n}}}{4n}=4nn1+n2+n1−n2=1+2n+1−2n4= \frac{\sqrt{1+\frac{2}{n}} + \sqrt{1-\frac{2}{n}}}{4}=41+n2+1−n2次に、nを無限大に近づけます。limn→∞2n=0\lim_{n \to \infty} \frac{2}{n} = 0limn→∞n2=0 なので、limn→∞1+2n+1−2n4=1+0+1−04=1+14=24=12\lim_{n \to \infty} \frac{\sqrt{1+\frac{2}{n}} + \sqrt{1-\frac{2}{n}}}{4} = \frac{\sqrt{1+0} + \sqrt{1-0}}{4} = \frac{1+1}{4} = \frac{2}{4} = \frac{1}{2}limn→∞41+n2+1−n2=41+0+1−0=41+1=42=213. 最終的な答え12\frac{1}{2}21