関数 $y = \frac{\log(x^2+x)}{\log(x+1)}$ を微分せよ。解析学微分対数関数商の微分2025/7/311. 問題の内容関数 y=log(x2+x)log(x+1)y = \frac{\log(x^2+x)}{\log(x+1)}y=log(x+1)log(x2+x) を微分せよ。2. 解き方の手順y=log(x2+x)log(x+1)y = \frac{\log(x^2+x)}{\log(x+1)}y=log(x+1)log(x2+x) を微分するために、商の微分公式を使用します。商の微分公式は次の通りです。(uv)′=u′v−uv′v2(\frac{u}{v})' = \frac{u'v - uv'}{v^2}(vu)′=v2u′v−uv′ここでは、u=log(x2+x)u = \log(x^2+x)u=log(x2+x) 、v=log(x+1)v = \log(x+1)v=log(x+1) とおきます。まず、uuu を微分します。u=log(x2+x)=log(x(x+1))=logx+log(x+1)u = \log(x^2+x) = \log(x(x+1)) = \log x + \log(x+1)u=log(x2+x)=log(x(x+1))=logx+log(x+1)u′=1x+1x+1=x+1+xx(x+1)=2x+1x(x+1)u' = \frac{1}{x} + \frac{1}{x+1} = \frac{x+1+x}{x(x+1)} = \frac{2x+1}{x(x+1)}u′=x1+x+11=x(x+1)x+1+x=x(x+1)2x+1次に、vvv を微分します。v=log(x+1)v = \log(x+1)v=log(x+1)v′=1x+1v' = \frac{1}{x+1}v′=x+11商の微分公式に代入します。y′=u′v−uv′v2=2x+1x(x+1)log(x+1)−(logx+log(x+1))1x+1(log(x+1))2y' = \frac{u'v - uv'}{v^2} = \frac{\frac{2x+1}{x(x+1)} \log(x+1) - (\log x + \log(x+1))\frac{1}{x+1}}{(\log(x+1))^2}y′=v2u′v−uv′=(log(x+1))2x(x+1)2x+1log(x+1)−(logx+log(x+1))x+11=2x+1x(x+1)log(x+1)−logxx+1−log(x+1)x+1(log(x+1))2= \frac{\frac{2x+1}{x(x+1)} \log(x+1) - \frac{\log x}{x+1} - \frac{\log(x+1)}{x+1}}{(\log(x+1))^2}=(log(x+1))2x(x+1)2x+1log(x+1)−x+1logx−x+1log(x+1)=(2x+1)log(x+1)−xlogx−xlog(x+1)x(x+1)(log(x+1))2= \frac{\frac{(2x+1)\log(x+1) - x\log x - x\log(x+1)}{x(x+1)}}{(\log(x+1))^2}=(log(x+1))2x(x+1)(2x+1)log(x+1)−xlogx−xlog(x+1)=(2x+1)log(x+1)−xlogx−xlog(x+1)x(x+1)(log(x+1))2= \frac{(2x+1)\log(x+1) - x\log x - x\log(x+1)}{x(x+1)(\log(x+1))^2}=x(x+1)(log(x+1))2(2x+1)log(x+1)−xlogx−xlog(x+1)=(2x+1−x)log(x+1)−xlogxx(x+1)(log(x+1))2= \frac{(2x+1 - x)\log(x+1) - x\log x}{x(x+1)(\log(x+1))^2}=x(x+1)(log(x+1))2(2x+1−x)log(x+1)−xlogx=(x+1)log(x+1)−xlogxx(x+1)(log(x+1))2= \frac{(x+1)\log(x+1) - x\log x}{x(x+1)(\log(x+1))^2}=x(x+1)(log(x+1))2(x+1)log(x+1)−xlogx3. 最終的な答え(x+1)log(x+1)−xlogxx(x+1){log(x+1)}2\frac{(x+1)\log(x+1) - x\log x}{x(x+1)\{\log(x+1)\}^2}x(x+1){log(x+1)}2(x+1)log(x+1)−xlogxしたがって、選択肢5が正しいです。