関数 $y = \sqrt{\frac{x+2}{x-1}} \cdot x$ の導関数を求めよ。解析学導関数微分対数微分法2025/7/311. 問題の内容関数 y=x+2x−1⋅xy = \sqrt{\frac{x+2}{x-1}} \cdot xy=x−1x+2⋅x の導関数を求めよ。2. 解き方の手順まず、y=x+2x−1⋅xy = \sqrt{\frac{x+2}{x-1}} \cdot xy=x−1x+2⋅x の両辺の自然対数をとります。lny=ln(x+2x−1⋅x)\ln y = \ln \left( \sqrt{\frac{x+2}{x-1}} \cdot x \right)lny=ln(x−1x+2⋅x)lny=ln((x+2x−1)12⋅x)\ln y = \ln \left( \left( \frac{x+2}{x-1} \right)^{\frac{1}{2}} \cdot x \right)lny=ln((x−1x+2)21⋅x)lny=ln(x+2x−1)12+lnx\ln y = \ln \left( \frac{x+2}{x-1} \right)^{\frac{1}{2}} + \ln xlny=ln(x−1x+2)21+lnxlny=12ln(x+2x−1)+lnx\ln y = \frac{1}{2} \ln \left( \frac{x+2}{x-1} \right) + \ln xlny=21ln(x−1x+2)+lnxlny=12(ln(x+2)−ln(x−1))+lnx\ln y = \frac{1}{2} \left( \ln(x+2) - \ln(x-1) \right) + \ln xlny=21(ln(x+2)−ln(x−1))+lnx次に、両辺を xxx で微分します。1ydydx=12(1x+2−1x−1)+1x\frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left( \frac{1}{x+2} - \frac{1}{x-1} \right) + \frac{1}{x}y1dxdy=21(x+21−x−11)+x11ydydx=12((x−1)−(x+2)(x+2)(x−1))+1x\frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left( \frac{(x-1) - (x+2)}{(x+2)(x-1)} \right) + \frac{1}{x}y1dxdy=21((x+2)(x−1)(x−1)−(x+2))+x11ydydx=12(−3(x+2)(x−1))+1x\frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left( \frac{-3}{(x+2)(x-1)} \right) + \frac{1}{x}y1dxdy=21((x+2)(x−1)−3)+x11ydydx=−32(x+2)(x−1)+1x\frac{1}{y} \frac{dy}{dx} = \frac{-3}{2(x+2)(x-1)} + \frac{1}{x}y1dxdy=2(x+2)(x−1)−3+x11ydydx=−3x+2(x+2)(x−1)2x(x+2)(x−1)\frac{1}{y} \frac{dy}{dx} = \frac{-3x + 2(x+2)(x-1)}{2x(x+2)(x-1)}y1dxdy=2x(x+2)(x−1)−3x+2(x+2)(x−1)1ydydx=−3x+2(x2+x−2)2x(x+2)(x−1)\frac{1}{y} \frac{dy}{dx} = \frac{-3x + 2(x^2 + x - 2)}{2x(x+2)(x-1)}y1dxdy=2x(x+2)(x−1)−3x+2(x2+x−2)1ydydx=−3x+2x2+2x−42x(x+2)(x−1)\frac{1}{y} \frac{dy}{dx} = \frac{-3x + 2x^2 + 2x - 4}{2x(x+2)(x-1)}y1dxdy=2x(x+2)(x−1)−3x+2x2+2x−41ydydx=2x2−x−42x(x+2)(x−1)\frac{1}{y} \frac{dy}{dx} = \frac{2x^2 - x - 4}{2x(x+2)(x-1)}y1dxdy=2x(x+2)(x−1)2x2−x−4dydx=y⋅2x2−x−42x(x+2)(x−1)\frac{dy}{dx} = y \cdot \frac{2x^2 - x - 4}{2x(x+2)(x-1)}dxdy=y⋅2x(x+2)(x−1)2x2−x−4dydx=x+2x−1⋅x⋅2x2−x−42x(x+2)(x−1)\frac{dy}{dx} = \sqrt{\frac{x+2}{x-1}} \cdot x \cdot \frac{2x^2 - x - 4}{2x(x+2)(x-1)}dxdy=x−1x+2⋅x⋅2x(x+2)(x−1)2x2−x−4dydx=x+2x−1⋅2x2−x−42(x+2)(x−1)\frac{dy}{dx} = \sqrt{\frac{x+2}{x-1}} \cdot \frac{2x^2 - x - 4}{2(x+2)(x-1)}dxdy=x−1x+2⋅2(x+2)(x−1)2x2−x−4dydx=2x2−x−42(x+2)12(x−1)32\frac{dy}{dx} = \frac{2x^2 - x - 4}{2(x+2)^{\frac{1}{2}} (x-1)^{\frac{3}{2}}}dxdy=2(x+2)21(x−1)232x2−x−43. 最終的な答えdydx=2x2−x−42x+2(x−1)x−1\frac{dy}{dx} = \frac{2x^2 - x - 4}{2\sqrt{x+2}(x-1)\sqrt{x-1}}dxdy=2x+2(x−1)x−12x2−x−4またはdydx=2x2−x−42(x+2)12(x−1)32\frac{dy}{dx} = \frac{2x^2-x-4}{2(x+2)^{\frac{1}{2}}(x-1)^{\frac{3}{2}}}dxdy=2(x+2)21(x−1)232x2−x−4またはdydx=2x2−x−42(x+2)x−1(x+2)3\frac{dy}{dx} = \frac{2x^2 - x - 4}{2 (x+2)\sqrt{\frac{x-1}{(x+2)^3}}}dxdy=2(x+2)(x+2)3x−12x2−x−4など