与えられた数学の問題を解く。具体的には、根号の計算、文字式の計算、式の簡略化を行う。代数学根号文字式式の計算指数法則分数式2025/3/111. 問題の内容与えられた数学の問題を解く。具体的には、根号の計算、文字式の計算、式の簡略化を行う。2. 解き方の手順(1) 3×15\sqrt{3} \times \sqrt{15}3×153×15=3×15=45=9×5=32×5=35\sqrt{3} \times \sqrt{15} = \sqrt{3 \times 15} = \sqrt{45} = \sqrt{9 \times 5} = \sqrt{3^2 \times 5} = 3\sqrt{5}3×15=3×15=45=9×5=32×5=35(2) 80÷5\sqrt{80} \div \sqrt{5}80÷580÷5=805=16=4\sqrt{80} \div \sqrt{5} = \sqrt{\frac{80}{5}} = \sqrt{16} = 480÷5=580=16=4(3) (4x−3y)+(−3x+2y)(4x - 3y) + (-3x + 2y)(4x−3y)+(−3x+2y)4x−3y−3x+2y=(4x−3x)+(−3y+2y)=x−y4x - 3y - 3x + 2y = (4x - 3x) + (-3y + 2y) = x - y4x−3y−3x+2y=(4x−3x)+(−3y+2y)=x−y(4) (5a+2b)−(3a−3b)(5a + 2b) - (3a - 3b)(5a+2b)−(3a−3b)5a+2b−3a+3b=(5a−3a)+(2b+3b)=2a+5b5a + 2b - 3a + 3b = (5a - 3a) + (2b + 3b) = 2a + 5b5a+2b−3a+3b=(5a−3a)+(2b+3b)=2a+5b(5) (−6a)2(-6a)^2(−6a)2(−6a)2=(−6)2×a2=36a2(-6a)^2 = (-6)^2 \times a^2 = 36a^2(−6a)2=(−6)2×a2=36a2(6) (−3x)3(-3x)^3(−3x)3(−3x)3=(−3)3×x3=−27x3(-3x)^3 = (-3)^3 \times x^3 = -27x^3(−3x)3=(−3)3×x3=−27x3(7) −6a3×2ab÷4a2-6a^3 \times 2ab \div 4a^2−6a3×2ab÷4a2−6a3×2ab÷4a2=−6a3×2ab4a2=−12a4b4a2=−3a2b-6a^3 \times 2ab \div 4a^2 = \frac{-6a^3 \times 2ab}{4a^2} = \frac{-12a^4b}{4a^2} = -3a^2b−6a3×2ab÷4a2=4a2−6a3×2ab=4a2−12a4b=−3a2b(8) (x2y÷x)×3x(\frac{x^2}{y} \div x) \times 3x(yx2÷x)×3x(x2y÷x)×3x=(x2y×1x)×3x=xy×3x=3x2y(\frac{x^2}{y} \div x) \times 3x = (\frac{x^2}{y} \times \frac{1}{x}) \times 3x = \frac{x}{y} \times 3x = \frac{3x^2}{y}(yx2÷x)×3x=(yx2×x1)×3x=yx×3x=y3x23. 最終的な答え(1) 353\sqrt{5}35(2) 444(3) x−yx - yx−y(4) 2a+5b2a + 5b2a+5b(5) 36a236a^236a2(6) −27x3-27x^3−27x3(7) −3a2b-3a^2b−3a2b(8) 3x2y\frac{3x^2}{y}y3x2