定積分 $\int_{0}^{4} (6x^2 - 6x + 1) dx$ を計算する問題です。

解析学定積分積分多項式
2025/4/5

1. 問題の内容

定積分 04(6x26x+1)dx\int_{0}^{4} (6x^2 - 6x + 1) dx を計算する問題です。

2. 解き方の手順

まず、積分する関数 6x26x+16x^2 - 6x + 1 の不定積分を求めます。
xnx^n の不定積分は xn+1n+1\frac{x^{n+1}}{n+1} です。
(6x26x+1)dx=6x2dx6xdx+1dx\int (6x^2 - 6x + 1) dx = 6 \int x^2 dx - 6 \int x dx + \int 1 dx
=6x336x22+x+C= 6 \cdot \frac{x^3}{3} - 6 \cdot \frac{x^2}{2} + x + C
=2x33x2+x+C= 2x^3 - 3x^2 + x + C
ここで、CC は積分定数です。定積分を計算する際には、CC は打ち消されるため、省略できます。
次に、求めた不定積分に積分区間の上限(4)と下限(0)を代入し、その差を計算します。
04(6x26x+1)dx=[2x33x2+x]04\int_{0}^{4} (6x^2 - 6x + 1) dx = [2x^3 - 3x^2 + x]_0^4
=(2(4)33(4)2+4)(2(0)33(0)2+0)= (2(4)^3 - 3(4)^2 + 4) - (2(0)^3 - 3(0)^2 + 0)
=(264316+4)(0)= (2 \cdot 64 - 3 \cdot 16 + 4) - (0)
=(12848+4)= (128 - 48 + 4)
=84= 84

3. 最終的な答え

84

「解析学」の関連問題

関数 $f(x) = \ln(\sqrt{1+x^2} - x) + 1$ が与えられており、$f(a) = 4$ である。また、$f(x) = g(x) + 1$ であり、$g(x)$ が奇関数であ...

関数対数関数奇関数合成関数
2025/7/25

関数 $f(x)$ が以下のように定義されているとき、実数全体で単調減少となるような $a$ の範囲を求める問題です。 $f(x) = \begin{cases} x^2 - 4ax + 1 & (x...

関数の単調性対数関数微分不等式場合分け
2025/7/25

区分関数 $f(x)$ が与えられており、 $f(x) = \begin{cases} 2x^2 - 8ax + 3 & (x \le 1) \\ \log_a x & (x > 1) \end{ca...

微分単調減少対数関数区分関数
2025/7/25

(1) 関数 $f(x) = e^x - \sin(x)$ のマクローリン展開を3次まで求めよ。 (2) (1)で求めたマクローリン展開を$g(x)$とおく。関数$g(x)$の増減、凹凸を調べ、曲線$...

マクローリン展開関数の増減関数の凹凸グラフの概形
2025/7/25

(3) $\int \frac{x+5}{(x-1)(x+2)} dx$ を計算し、$\log$ の形で表された結果の空欄を埋める。 (4) $\lim_{x \to 2} \frac{1}{x-2}...

積分部分分数分解極限ロピタルの定理
2025/7/25

与えられた4つの積分・極限の問題を解き、空欄を埋める問題です。 (1) $\int \frac{dx}{(5x+3)^2} = \frac{\boxed{ア}}{\boxed{イウ}x + \boxe...

積分極限置換積分部分積分ロピタルの定理
2025/7/25

与えられた問題は、極限、級数の和、微分の計算問題です。具体的には、以下の内容を計算します。 * 問題1.1:極限の計算 * (1) $\lim_{x \to 1} \frac{x^3 ...

極限級数微分合成関数の微分積の微分商の微分
2025/7/25

$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$ を求めよ。

極限三角関数テイラー展開
2025/7/25

次の極限を計算する問題です。ここで、$a>0$ です。 $$ \lim_{x \to 0} \frac{\log(x+a) - \log a}{x} $$

極限対数ロピタルの定理
2025/7/25

$\lim_{x \to 0} \frac{a^x - 1}{x}$ (ただし、$a > 0$ かつ $a \neq 1$) を計算します。

極限指数関数対数関数微分ロピタルの定理
2025/7/25