与えられた等式 $-6x + 6y = -4$ を $y$ について解き、$y = \frac{[イ]}{[ア]}$ の形式で表す。

代数学一次方程式式の変形代数
2025/8/2

1. 問題の内容

与えられた等式 6x+6y=4-6x + 6y = -4yy について解き、y=[][]y = \frac{[イ]}{[ア]} の形式で表す。

2. 解き方の手順

まず、与えられた式 6x+6y=4-6x + 6y = -4 において、yy の項を左辺に、それ以外の項を右辺に移項します。
6y=6x46y = 6x - 4
次に、両辺を 66 で割って、yy について解きます。
y=6x46y = \frac{6x - 4}{6}
分子の各項を 6 で割ります。
y=6x646y = \frac{6x}{6} - \frac{4}{6}
y=x23y = x - \frac{2}{3}
分数にすると y=3x323y = \frac{3x}{3} - \frac{2}{3}
y=3x23y = \frac{3x - 2}{3}
よって、[イ]は 3x23x-2、[ア]は 33となります。

3. 最終的な答え

y=3x23y = \frac{3x - 2}{3}

「代数学」の関連問題

連立方程式 $4x - 5y = 5x - 3y = 3x - 2y - 10$ を解き、選択肢の中から正しい解を選びなさい。

連立方程式一次方程式代入法方程式の解
2025/8/2

与えられた連立方程式 $2x + y = x + 2y = -6$ を解き、$x$ と $y$ の値を求め、選択肢の中から正しい組み合わせを選びます。

連立方程式一次方程式代入法
2025/8/2

A地点からB地点を経てC地点まで、全長200kmの道のりを自動車で移動する。A-B間は時速40km、B-C間は時速80kmで走り、合計3時間かかった。A-B間とB-C間の走行時間をそれぞれ求めよ。

連立方程式文章問題速度距離時間
2025/8/2

3次方程式 $x^3 + 6x^2 - 15x - k = 0$ の実数解の個数に関する問題です。 - 異なる3個の実数解をもつときの $k$ の値の範囲を求めます。 - ただ一つの実数解をもち、それ...

三次方程式実数解微分極値グラフ
2025/8/2

次の連立方程式を解きます。 $ \begin{cases} 7x - 2y = -9 ...(1) \\ \frac{2x - 3y}{3} = 4 ...(2) \end{cases} $

連立方程式一次方程式代入法計算
2025/8/2

次の連立方程式を解く問題です。 $\begin{cases} \frac{2}{3}x + \frac{3}{4}y = -10 \\ 5x - 3y = -6 \end{cases}$

連立方程式線形代数方程式
2025/8/2

関数 $y = -2x^2$ において、xの変域が $-2 \le x \le a$ のとき、yの変域が $-18 \le y \le b$ である。a, bにあてはまる数を求めよ。

二次関数最大値最小値放物線変域
2025/8/2

与えられた行列 $A = \begin{pmatrix} i & 0 & 0 \\ 0 & -i & -2 \\ 0 & 2 & i \end{pmatrix}$ に対して、以下の問いに答える問題です...

線形代数行列固有値固有ベクトル正規行列ユニタリ行列対角化
2025/8/2

実数 $a$ を含む $x$ の4次方程式 $x^4 + 2ax^2 - a + 2 = 0$ について、以下の問題を解く。 (1) この方程式が実数解をもたないような $a$ の値の範囲を求める。 ...

四次方程式二次方程式判別式実数解解の範囲
2025/8/2

(1) 関数 $f(x) = x + 2$ と $g(x) = x^2$ が与えられています。$(f \circ h)(x) = g(x)$ を満たす2次関数 $h(x)$ を求める必要があります。 ...

関数合成関数逆関数二次関数
2025/8/2