与えられた式を簡略化する問題です。式は次の通りです。 $\frac{\frac{1}{x+h} - \frac{1}{x}}{h}$

解析学極限微分の定義分数式
2025/8/2

1. 問題の内容

与えられた式を簡略化する問題です。式は次の通りです。
1x+h1xh\frac{\frac{1}{x+h} - \frac{1}{x}}{h}

2. 解き方の手順

まず、分子の分数をまとめます。
1x+h1x=x(x+h)x(x+h)=xxhx(x+h)=hx(x+h)\frac{1}{x+h} - \frac{1}{x} = \frac{x - (x+h)}{x(x+h)} = \frac{x - x - h}{x(x+h)} = \frac{-h}{x(x+h)}
次に、元の式に代入します。
hx(x+h)h=hx(x+h)1h\frac{\frac{-h}{x(x+h)}}{h} = \frac{-h}{x(x+h)} \cdot \frac{1}{h}
hh を約分します。
1x(x+h)\frac{-1}{x(x+h)}
最終的に、答えは 1x(x+h)-\frac{1}{x(x+h)}となります。

3. 最終的な答え

1x(x+h)-\frac{1}{x(x+h)}

「解析学」の関連問題

この問題は、三角関数の値、対数の計算、関数の微分、不定積分という4つの分野に分かれています。 (1) 三角関数の値を求める問題です。$\sin(-\frac{5\pi}{6})$, $\cos(\fr...

三角関数対数微分不定積分合成関数積の微分部分積分
2025/8/2

次の関数を対数微分法で微分する。ただし、$x>0$とする。 (1) $y = (2x)^x$ (2) $y = x^{\sin x}$

微分対数微分法関数の微分
2025/8/2

次の2つの関数について、増減、凹凸、および極限を調べ、グラフの概形を描く問題です。 (1) $y = \frac{e^x}{x^2}$ (2) $y = \frac{\log x}{x}$

関数の増減関数の凹凸極限グラフの概形微分ロピタルの定理
2025/8/2

関数 $y = 3\cos(ax + b)$ のグラフを $C$ とする。ただし、$0 < a < 1$, $0 < b < \pi/2$。 グラフ $C$ は点 $(0, \frac{3\sqrt{...

三角関数グラフ周期平行移動方程式の解
2025/8/2

## 問題の内容

微分対数関数合成関数の微分
2025/8/2

与えられた4つの関数をそれぞれ微分する問題です。 (1) $y = \sin^4 3x$ (2) $y = \tan^3 2x$ (3) $y = e^{x^3} \sin 2x$ (4) $y = ...

微分連鎖律三角関数指数関数対数関数
2025/8/2

関数 $y = (2x)^x$ を対数微分法を用いて微分せよ。ただし、$x > 0$ とする。

対数微分法微分合成関数の微分積の微分
2025/8/2

関数 $y = \frac{1}{4x^3} + \frac{1}{2x^2} - 2\sqrt{x} + 1$ を $x$ で微分せよ。

微分関数の微分微分計算
2025/8/2

与えられた関数 $y = \frac{1}{x^4} - \frac{2}{x^3} + \frac{3}{x^2} - \frac{1}{x} + 1$ を $x$ で微分しなさい。

微分関数の微分べき乗の微分分数関数
2025/8/2

与えられた4つの関数 $f(x)$ について、$n=4$ までのマクローリン展開(テイラー展開の$a=0$の場合)を求めよ。関数は以下の通り。 (1) $f(x) = \sin x$ (2) $f(x...

マクローリン展開テイラー展開関数の展開微分三角関数冪級数
2025/8/2