$\log_{16}4$ の値を求める問題です。

代数学対数指数計算
2025/3/11

1. 問題の内容

log164\log_{16}4 の値を求める問題です。

2. 解き方の手順

対数の定義より、x=log164x = \log_{16}4 とすると、16x=416^x = 4 となります。
16と4をそれぞれ2の累乗で表すと、16=2416 = 2^44=224 = 2^2 なので、16x=(24)x=24x16^x = (2^4)^x = 2^{4x}となります。
したがって、24x=222^{4x} = 2^2 が成り立つためには、4x=24x = 2 でなければなりません。
4x=24x = 2xx について解くと、x=24=12x = \frac{2}{4} = \frac{1}{2} となります。

3. 最終的な答え

12\frac{1}{2}

「代数学」の関連問題

与えられた4つの2次関数について、それぞれのグラフを描き、頂点の座標と軸の方程式を求める問題です。 (1) $y = x^2 + 2x - 1$ (2) $y = 3x^2 - 6x - 2$ (3)...

二次関数平方完成グラフ頂点
2025/7/13

2次方程式 $2x^2 - 8x - 10 = 0$ を解く問題です。平方完成を利用して解く手順が段階的に示されており、空欄を埋める形式になっています。

二次方程式平方完成方程式
2025/7/13

2次関数 $y = -2x^2 - 8x - 6$ のグラフを描き、頂点と軸を求める問題です。

二次関数グラフ平方完成頂点
2025/7/13

$x$ を実数とし、条件 $p$, $q$, $r$ が次のように定められている。 $p$: $x$ は1桁の素数 $q$: $x$ は1桁の正の奇数 $r$: $x$ は2次方程式 $x^2 - 8...

条件命題必要条件十分条件二次方程式素数奇数
2025/7/13

二次方程式に関する問題です。 (1) 解が与えられたときの定数の値を求める問題。 (2) 2つの二次方程式について、重解を持つ条件、虚数解を持つ条件、少なくとも一方が実数解を持つ条件を求める問題。 (...

二次方程式解の公式判別式解と係数の関係重解虚数解実数解
2025/7/13

2次方程式 $x^2 + 6x = 16$ を解く問題です。平方完成を用いて解く過程の空欄を埋めます。

二次方程式平方完成
2025/7/13

$x = \sqrt{3} + 4$、 $y = \sqrt{3} - 4$ のとき、式 $x^2 - xy$ の値を求める。

式の計算因数分解平方根代入
2025/7/13

与えられた不等式を解き、空欄を埋める問題です。

不等式一次不等式解法移項計算
2025/7/13

問題4と5は、与えられた2次関数のグラフを描き、その軸と頂点を求める問題です。

二次関数グラフ頂点放物線
2025/7/13

$x^2 - 2ax + a^2 = (x-a)^2$ の公式を使って、$x^2 - 8x + 16$ を因数分解する問題です。$x^2 - 8x + 16 = x^2 - 2 \times 4x +...

因数分解二次方程式式の展開
2025/7/13