円周上に6個の異なる点があるとき、これらの点のうち3個を選んでできる三角形の総数を求める問題です。

幾何学組み合わせ三角形組み合わせ
2025/8/3

1. 問題の内容

円周上に6個の異なる点があるとき、これらの点のうち3個を選んでできる三角形の総数を求める問題です。

2. 解き方の手順

三角形を作るには、6個の点から異なる3個の点を選ぶ必要があります。これは組み合わせの問題として考えることができます。
6個から3個を選ぶ組み合わせの数は、組み合わせの公式を使って計算できます。組み合わせの公式は次の通りです。
nCr=n!r!(nr)!_{n}C_{r} = \frac{n!}{r!(n-r)!}
ここで、nnは全体の数、rrは選ぶ数、!!は階乗を表します。
この問題では、n=6n = 6r=3r = 3なので、
6C3=6!3!(63)!=6!3!3!=6×5×4×3×2×1(3×2×1)(3×2×1)=6×5×43×2×1=1206=20_{6}C_{3} = \frac{6!}{3!(6-3)!} = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(3 \times 2 \times 1)} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = \frac{120}{6} = 20
したがって、三角形の個数は20個です。

3. 最終的な答え

20個

「幾何学」の関連問題

三角形ABCの辺BC, CA, AB上にそれぞれ点D, E, Fをとる。BD:DC = CE:EA = AF:FB = 3:2 となるとき、線分ADとCFの交点をG、線分BEとCFの交点をHとする。こ...

チェバの定理メネラウスの定理三角形
2025/8/4

問題は、与えられたベクトル方程式を満たす点Pがどのような図形上にあるかを求める問題です。 (1) $|4\vec{p} - 3\vec{a} - \vec{b}| = 8$ (2) $(\vec{p}...

ベクトルベクトル方程式内分外分
2025/8/4

平面上の2点 $A(-1, 6)$ と $B(3, 2)$ が与えられています。この2点について、以下の3つの点の座標を求めます。 (1) 線分ABを3:1に内分する点 (2) 線分ABの中点 (3)...

座標平面線分内分点外分点中点
2025/8/4

三角形ABCと点Pがあり、$3\overrightarrow{AP} + 4\overrightarrow{BP} + 5\overrightarrow{CP} = \overrightarrow{0...

ベクトル三角形ベクトルの加法ベクトルのスカラー倍内分点線分の比
2025/8/4

円Oの直径ABは7であり、円周上に点CとDがある。線分ABとCDの交点をPとする。CP=2、DP=3であるとき、OPの長さを求めよ。

方べきの定理直径交点
2025/8/4

問題は2つあります。 (1) $\triangle OAB$ において、辺 $OA$ を $3:2$ に内分する点を $M$、辺 $OB$ を $3:1$ に内分する点を $N$ とし、線分 $AN$...

ベクトル内分交点図形
2025/8/4

$$\overrightarrow{OP} = (1-s)\vec{a} + \frac{3}{4}s\vec{b}$$

ベクトル内分交点線形結合
2025/8/4

花子さんと太郎さんが噴水の高さについて考えています。噴水の水が描く曲線は3つとも放物線で、水が出る位置は水平な地面上にあります。図1には、3つの噴水を正面から見た図が座標平面上に描かれています。$P_...

放物線座標平面二次関数噴水
2025/8/4

直角三角形ABCにおいて、点Pは辺AB上をAからBへ毎秒1cmの速さで動き、点Qは辺CB上をCからBへ毎秒1cmの速さで動く。点Pと点Qが同時に出発するとき、三角形PBQの面積が三角形ABCの面積の$...

直角三角形面積二次方程式動点
2025/8/4

直角二等辺三角形ABCがあり、AB = BC = 18cmである。点Pは辺AB上を毎秒2cmでAからBへ、点Qは辺CB上を毎秒2cmでCからBへ移動する。点Pと点Qが同時に出発するとき、三角形PBQの...

三角形面積二次方程式動点相似
2025/8/4