与えられた積分 $\int \frac{x^4}{x^3+1} dx$ を計算します。解析学積分部分分数分解不定積分arctan2025/8/31. 問題の内容与えられた積分 ∫x4x3+1dx\int \frac{x^4}{x^3+1} dx∫x3+1x4dx を計算します。2. 解き方の手順まず、分子の次数が分母の次数よりも大きいので、割り算を行います。x4x^4x4 を x3+1x^3+1x3+1 で割ると、商は xxx、余りは −x-x−x となります。したがって、x4x3+1=x−xx3+1\frac{x^4}{x^3+1} = x - \frac{x}{x^3+1}x3+1x4=x−x3+1x元の積分は次のようになります。∫x4x3+1dx=∫(x−xx3+1)dx=∫xdx−∫xx3+1dx\int \frac{x^4}{x^3+1} dx = \int (x - \frac{x}{x^3+1}) dx = \int x dx - \int \frac{x}{x^3+1} dx∫x3+1x4dx=∫(x−x3+1x)dx=∫xdx−∫x3+1xdx∫xdx=12x2+C1\int x dx = \frac{1}{2}x^2 + C_1∫xdx=21x2+C1次に、∫xx3+1dx\int \frac{x}{x^3+1} dx∫x3+1xdx を計算します。x3+1=(x+1)(x2−x+1)x^3+1 = (x+1)(x^2-x+1)x3+1=(x+1)(x2−x+1) なので、部分分数分解を行います。xx3+1=Ax+1+Bx+Cx2−x+1\frac{x}{x^3+1} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}x3+1x=x+1A+x2−x+1Bx+Cx=A(x2−x+1)+(Bx+C)(x+1)x = A(x^2-x+1) + (Bx+C)(x+1)x=A(x2−x+1)+(Bx+C)(x+1)x=Ax2−Ax+A+Bx2+Bx+Cx+Cx = Ax^2 - Ax + A + Bx^2 + Bx + Cx + Cx=Ax2−Ax+A+Bx2+Bx+Cx+Cx=(A+B)x2+(−A+B+C)x+(A+C)x = (A+B)x^2 + (-A+B+C)x + (A+C)x=(A+B)x2+(−A+B+C)x+(A+C)係数を比較すると、A+B=0A+B = 0A+B=0−A+B+C=1-A+B+C = 1−A+B+C=1A+C=0A+C = 0A+C=0B=−AB = -AB=−A, C=−AC = -AC=−A を −A+B+C=1-A+B+C = 1−A+B+C=1 に代入すると、−A−A−A=1-A-A-A = 1−A−A−A=1, −3A=1-3A = 1−3A=1, A=−13A = -\frac{1}{3}A=−31したがって、B=13B = \frac{1}{3}B=31, C=13C = \frac{1}{3}C=31よって、xx3+1=−13(x+1)+x+13(x2−x+1)\frac{x}{x^3+1} = -\frac{1}{3(x+1)} + \frac{x+1}{3(x^2-x+1)}x3+1x=−3(x+1)1+3(x2−x+1)x+1∫xx3+1dx=−13∫1x+1dx+13∫x+1x2−x+1dx\int \frac{x}{x^3+1} dx = -\frac{1}{3} \int \frac{1}{x+1} dx + \frac{1}{3} \int \frac{x+1}{x^2-x+1} dx∫x3+1xdx=−31∫x+11dx+31∫x2−x+1x+1dx∫1x+1dx=ln∣x+1∣\int \frac{1}{x+1} dx = \ln|x+1|∫x+11dx=ln∣x+1∣∫x+1x2−x+1dx=∫12(2x−1)+32x2−x+1dx=12∫2x−1x2−x+1dx+32∫1x2−x+1dx\int \frac{x+1}{x^2-x+1} dx = \int \frac{\frac{1}{2}(2x-1)+\frac{3}{2}}{x^2-x+1} dx = \frac{1}{2} \int \frac{2x-1}{x^2-x+1} dx + \frac{3}{2} \int \frac{1}{x^2-x+1} dx∫x2−x+1x+1dx=∫x2−x+121(2x−1)+23dx=21∫x2−x+12x−1dx+23∫x2−x+11dx∫2x−1x2−x+1dx=ln∣x2−x+1∣\int \frac{2x-1}{x^2-x+1} dx = \ln|x^2-x+1|∫x2−x+12x−1dx=ln∣x2−x+1∣∫1x2−x+1dx=∫1(x−12)2+34dx=23arctan(2x−13)\int \frac{1}{x^2-x+1} dx = \int \frac{1}{(x-\frac{1}{2})^2 + \frac{3}{4}} dx = \frac{2}{\sqrt{3}} \arctan(\frac{2x-1}{\sqrt{3}})∫x2−x+11dx=∫(x−21)2+431dx=32arctan(32x−1)∫x+1x2−x+1dx=12ln∣x2−x+1∣+32⋅23arctan(2x−13)=12ln∣x2−x+1∣+3arctan(2x−13)\int \frac{x+1}{x^2-x+1} dx = \frac{1}{2}\ln|x^2-x+1| + \frac{3}{2} \cdot \frac{2}{\sqrt{3}} \arctan(\frac{2x-1}{\sqrt{3}}) = \frac{1}{2}\ln|x^2-x+1| + \sqrt{3} \arctan(\frac{2x-1}{\sqrt{3}})∫x2−x+1x+1dx=21ln∣x2−x+1∣+23⋅32arctan(32x−1)=21ln∣x2−x+1∣+3arctan(32x−1)∫xx3+1dx=−13ln∣x+1∣+13(12ln∣x2−x+1∣+3arctan(2x−13))\int \frac{x}{x^3+1} dx = -\frac{1}{3} \ln|x+1| + \frac{1}{3} (\frac{1}{2} \ln|x^2-x+1| + \sqrt{3} \arctan(\frac{2x-1}{\sqrt{3}}))∫x3+1xdx=−31ln∣x+1∣+31(21ln∣x2−x+1∣+3arctan(32x−1))∫xx3+1dx=−13ln∣x+1∣+16ln∣x2−x+1∣+33arctan(2x−13)\int \frac{x}{x^3+1} dx = -\frac{1}{3} \ln|x+1| + \frac{1}{6} \ln|x^2-x+1| + \frac{\sqrt{3}}{3} \arctan(\frac{2x-1}{\sqrt{3}})∫x3+1xdx=−31ln∣x+1∣+61ln∣x2−x+1∣+33arctan(32x−1)∫x4x3+1dx=12x2−[−13ln∣x+1∣+16ln∣x2−x+1∣+33arctan(2x−13)]+C\int \frac{x^4}{x^3+1} dx = \frac{1}{2}x^2 - [-\frac{1}{3} \ln|x+1| + \frac{1}{6} \ln|x^2-x+1| + \frac{\sqrt{3}}{3} \arctan(\frac{2x-1}{\sqrt{3}})] + C∫x3+1x4dx=21x2−[−31ln∣x+1∣+61ln∣x2−x+1∣+33arctan(32x−1)]+C∫x4x3+1dx=12x2+13ln∣x+1∣−16ln∣x2−x+1∣−33arctan(2x−13)+C\int \frac{x^4}{x^3+1} dx = \frac{1}{2}x^2 + \frac{1}{3} \ln|x+1| - \frac{1}{6} \ln|x^2-x+1| - \frac{\sqrt{3}}{3} \arctan(\frac{2x-1}{\sqrt{3}}) + C∫x3+1x4dx=21x2+31ln∣x+1∣−61ln∣x2−x+1∣−33arctan(32x−1)+C3. 最終的な答えx22+ln∣x+1∣3−ln∣x2−x+1∣6−33arctan(2x−13)+C\frac{x^2}{2} + \frac{\ln|x+1|}{3} - \frac{\ln|x^2-x+1|}{6} - \frac{\sqrt{3}}{3} \arctan\left(\frac{2x-1}{\sqrt{3}}\right) + C2x2+3ln∣x+1∣−6ln∣x2−x+1∣−33arctan(32x−1)+C