$\int \frac{1 + \sin x}{1 + \cos x} dx$ を計算する。解析学積分三角関数半角の公式不定積分2025/8/31. 問題の内容∫1+sinx1+cosxdx\int \frac{1 + \sin x}{1 + \cos x} dx∫1+cosx1+sinxdx を計算する。2. 解き方の手順まず、半角の公式を使ってsinx\sin xsinxとcosx\cos xcosxを書き換えます。sinx=2sinx2cosx2\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}sinx=2sin2xcos2xcosx=2cos2x2−1\cos x = 2 \cos^2 \frac{x}{2} - 1cosx=2cos22x−1これらの式を積分に代入します。∫1+sinx1+cosxdx=∫1+2sinx2cosx21+2cos2x2−1dx=∫1+2sinx2cosx22cos2x2dx\int \frac{1 + \sin x}{1 + \cos x} dx = \int \frac{1 + 2 \sin \frac{x}{2} \cos \frac{x}{2}}{1 + 2 \cos^2 \frac{x}{2} - 1} dx = \int \frac{1 + 2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2}} dx∫1+cosx1+sinxdx=∫1+2cos22x−11+2sin2xcos2xdx=∫2cos22x1+2sin2xcos2xdx積分を2つに分けます。∫12cos2x2dx+∫2sinx2cosx22cos2x2dx=12∫sec2x2dx+∫sinx2cosx2dx=12∫sec2x2dx+∫tanx2dx\int \frac{1}{2 \cos^2 \frac{x}{2}} dx + \int \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2}} dx = \frac{1}{2} \int \sec^2 \frac{x}{2} dx + \int \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} dx = \frac{1}{2} \int \sec^2 \frac{x}{2} dx + \int \tan \frac{x}{2} dx∫2cos22x1dx+∫2cos22x2sin2xcos2xdx=21∫sec22xdx+∫cos2xsin2xdx=21∫sec22xdx+∫tan2xdx∫sec2x2dx=2tanx2+C1\int \sec^2 \frac{x}{2} dx = 2 \tan \frac{x}{2} + C_1∫sec22xdx=2tan2x+C1∫tanx2dx=∫sinx2cosx2dx\int \tan \frac{x}{2} dx = \int \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} dx∫tan2xdx=∫cos2xsin2xdxu=cosx2u = \cos \frac{x}{2}u=cos2xとすると、dudx=−12sinx2\frac{du}{dx} = -\frac{1}{2} \sin \frac{x}{2}dxdu=−21sin2xより、dx=−2sinx2dudx = -\frac{2}{\sin \frac{x}{2}} dudx=−sin2x2du∫sinx2cosx2dx=∫sinx2u⋅(−2sinx2)du=−2∫1udu=−2ln∣u∣+C2=−2ln∣cosx2∣+C2\int \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} dx = \int \frac{\sin \frac{x}{2}}{u} \cdot (-\frac{2}{\sin \frac{x}{2}}) du = -2 \int \frac{1}{u} du = -2 \ln |u| + C_2 = -2 \ln |\cos \frac{x}{2}| + C_2∫cos2xsin2xdx=∫usin2x⋅(−sin2x2)du=−2∫u1du=−2ln∣u∣+C2=−2ln∣cos2x∣+C2よって、12∫sec2x2dx+∫tanx2dx=12(2tanx2)−2ln∣cosx2∣+C=tanx2−2ln∣cosx2∣+C\frac{1}{2} \int \sec^2 \frac{x}{2} dx + \int \tan \frac{x}{2} dx = \frac{1}{2} (2 \tan \frac{x}{2}) - 2 \ln |\cos \frac{x}{2}| + C = \tan \frac{x}{2} - 2 \ln |\cos \frac{x}{2}| + C21∫sec22xdx+∫tan2xdx=21(2tan2x)−2ln∣cos2x∣+C=tan2x−2ln∣cos2x∣+C3. 最終的な答えtanx2−2ln∣cosx2∣+C\tan \frac{x}{2} - 2 \ln |\cos \frac{x}{2}| + Ctan2x−2ln∣cos2x∣+C