与えられた積分 $\int \sqrt{\frac{x-2}{x-1}} dx$ を解く問題です。ただし、$x > 2$ という条件が与えられています。解析学積分置換積分部分分数分解2025/8/31. 問題の内容与えられた積分 ∫x−2x−1dx\int \sqrt{\frac{x-2}{x-1}} dx∫x−1x−2dx を解く問題です。ただし、x>2x > 2x>2 という条件が与えられています。2. 解き方の手順まず、被積分関数を簡単にするために、置換積分を行います。u=x−2x−1u = \sqrt{\frac{x-2}{x-1}}u=x−1x−2 とおきます。すると、u2=x−2x−1u^2 = \frac{x-2}{x-1}u2=x−1x−2 となります。これを xxx について解きます。u2(x−1)=x−2u^2(x-1) = x-2u2(x−1)=x−2u2x−u2=x−2u^2x - u^2 = x - 2u2x−u2=x−2u2x−x=u2−2u^2x - x = u^2 - 2u2x−x=u2−2x(u2−1)=u2−2x(u^2 - 1) = u^2 - 2x(u2−1)=u2−2x=u2−2u2−1x = \frac{u^2 - 2}{u^2 - 1}x=u2−1u2−2次に、xxx を uuu で微分します。dxdu=ddu(u2−2u2−1)\frac{dx}{du} = \frac{d}{du} \left(\frac{u^2 - 2}{u^2 - 1}\right)dudx=dud(u2−1u2−2)dxdu=2u(u2−1)−(u2−2)(2u)(u2−1)2\frac{dx}{du} = \frac{2u(u^2 - 1) - (u^2 - 2)(2u)}{(u^2 - 1)^2}dudx=(u2−1)22u(u2−1)−(u2−2)(2u)dxdu=2u3−2u−2u3+4u(u2−1)2\frac{dx}{du} = \frac{2u^3 - 2u - 2u^3 + 4u}{(u^2 - 1)^2}dudx=(u2−1)22u3−2u−2u3+4udxdu=2u(u2−1)2\frac{dx}{du} = \frac{2u}{(u^2 - 1)^2}dudx=(u2−1)22uしたがって、dx=2u(u2−1)2dudx = \frac{2u}{(u^2 - 1)^2} dudx=(u2−1)22udu となります。積分を uuu の変数に置き換えます。∫x−2x−1dx=∫u⋅2u(u2−1)2du=∫2u2(u2−1)2du\int \sqrt{\frac{x-2}{x-1}} dx = \int u \cdot \frac{2u}{(u^2 - 1)^2} du = \int \frac{2u^2}{(u^2 - 1)^2} du∫x−1x−2dx=∫u⋅(u2−1)22udu=∫(u2−1)22u2duここで、部分分数分解を行います。2u2(u2−1)2=2u2(u−1)2(u+1)2=Au−1+B(u−1)2+Cu+1+D(u+1)2\frac{2u^2}{(u^2 - 1)^2} = \frac{2u^2}{(u - 1)^2(u + 1)^2} = \frac{A}{u-1} + \frac{B}{(u-1)^2} + \frac{C}{u+1} + \frac{D}{(u+1)^2}(u2−1)22u2=(u−1)2(u+1)22u2=u−1A+(u−1)2B+u+1C+(u+1)2D2u2=A(u−1)(u+1)2+B(u+1)2+C(u+1)(u−1)2+D(u−1)22u^2 = A(u-1)(u+1)^2 + B(u+1)^2 + C(u+1)(u-1)^2 + D(u-1)^22u2=A(u−1)(u+1)2+B(u+1)2+C(u+1)(u−1)2+D(u−1)2u=1u=1u=1 のとき、2=4B2 = 4B2=4B より B=12B = \frac{1}{2}B=21u=−1u=-1u=−1 のとき、2=4D2 = 4D2=4D より D=12D = \frac{1}{2}D=212u2=A(u−1)(u2+2u+1)+12(u2+2u+1)+C(u+1)(u2−2u+1)+12(u2−2u+1)2u^2 = A(u-1)(u^2+2u+1) + \frac{1}{2}(u^2+2u+1) + C(u+1)(u^2-2u+1) + \frac{1}{2}(u^2-2u+1)2u2=A(u−1)(u2+2u+1)+21(u2+2u+1)+C(u+1)(u2−2u+1)+21(u2−2u+1)2u2=A(u3+2u2+u−u2−2u−1)+12u2+u+12+C(u3−2u2+u+u2−2u+1)+12u2−u+122u^2 = A(u^3+2u^2+u-u^2-2u-1) + \frac{1}{2}u^2+u+\frac{1}{2} + C(u^3-2u^2+u+u^2-2u+1) + \frac{1}{2}u^2-u+\frac{1}{2}2u2=A(u3+2u2+u−u2−2u−1)+21u2+u+21+C(u3−2u2+u+u2−2u+1)+21u2−u+212u2=A(u3+u2−u−1)+12u2+u+12+C(u3−u2−u+1)+12u2−u+122u^2 = A(u^3+u^2-u-1) + \frac{1}{2}u^2+u+\frac{1}{2} + C(u^3-u^2-u+1) + \frac{1}{2}u^2-u+\frac{1}{2}2u2=A(u3+u2−u−1)+21u2+u+21+C(u3−u2−u+1)+21u2−u+212u2=(A+C)u3+(A−C+1)u2+(−A−C)u+(−A+C+1)2u^2 = (A+C)u^3 + (A-C+1)u^2 + (-A-C)u + (-A+C+1)2u2=(A+C)u3+(A−C+1)u2+(−A−C)u+(−A+C+1)A+C=0A+C=0A+C=0A−C+1=2A-C+1 = 2A−C+1=2−A−C=0-A-C=0−A−C=0−A+C+1=0-A+C+1=0−A+C+1=0A+C=0A+C=0A+C=0 より C=−AC=-AC=−AA−(−A)+1=2A+1=2A-(-A)+1 = 2A+1 = 2A−(−A)+1=2A+1=2 より A=12A=\frac{1}{2}A=21C=−12C=-\frac{1}{2}C=−212u2(u2−1)2=1/2u−1+1/2(u−1)2+−1/2u+1+1/2(u+1)2\frac{2u^2}{(u^2 - 1)^2} = \frac{1/2}{u-1} + \frac{1/2}{(u-1)^2} + \frac{-1/2}{u+1} + \frac{1/2}{(u+1)^2}(u2−1)22u2=u−11/2+(u−1)21/2+u+1−1/2+(u+1)21/2∫2u2(u2−1)2du=12∫(1u−1+1(u−1)2−1u+1+1(u+1)2)du\int \frac{2u^2}{(u^2 - 1)^2} du = \frac{1}{2} \int \left(\frac{1}{u-1} + \frac{1}{(u-1)^2} - \frac{1}{u+1} + \frac{1}{(u+1)^2}\right) du∫(u2−1)22u2du=21∫(u−11+(u−1)21−u+11+(u+1)21)du=12(ln∣u−1∣−1u−1−ln∣u+1∣−1u+1)+C= \frac{1}{2} \left(\ln|u-1| - \frac{1}{u-1} - \ln|u+1| - \frac{1}{u+1}\right) + C=21(ln∣u−1∣−u−11−ln∣u+1∣−u+11)+C=12(ln∣u−1u+1∣−1u−1−1u+1)+C= \frac{1}{2} \left(\ln\left|\frac{u-1}{u+1}\right| - \frac{1}{u-1} - \frac{1}{u+1}\right) + C=21(lnu+1u−1−u−11−u+11)+C=12(ln∣u−1u+1∣−u+1+u−1(u−1)(u+1))+C= \frac{1}{2} \left(\ln\left|\frac{u-1}{u+1}\right| - \frac{u+1+u-1}{(u-1)(u+1)}\right) + C=21(lnu+1u−1−(u−1)(u+1)u+1+u−1)+C=12(ln∣u−1u+1∣−2uu2−1)+C= \frac{1}{2} \left(\ln\left|\frac{u-1}{u+1}\right| - \frac{2u}{u^2-1}\right) + C=21(lnu+1u−1−u2−12u)+C=12ln∣u−1u+1∣−uu2−1+C= \frac{1}{2} \ln\left|\frac{u-1}{u+1}\right| - \frac{u}{u^2-1} + C=21lnu+1u−1−u2−1u+Cu=x−2x−1u = \sqrt{\frac{x-2}{x-1}}u=x−1x−2 を代入します。=12ln∣x−2x−1−1x−2x−1+1∣−x−2x−1x−2x−1−1+C= \frac{1}{2} \ln\left|\frac{\sqrt{\frac{x-2}{x-1}}-1}{\sqrt{\frac{x-2}{x-1}}+1}\right| - \frac{\sqrt{\frac{x-2}{x-1}}}{\frac{x-2}{x-1}-1} + C=21lnx−1x−2+1x−1x−2−1−x−1x−2−1x−1x−2+C=12ln∣x−2−x−1x−2+x−1∣−x−2x−1x−2−(x−1)+C= \frac{1}{2} \ln\left|\frac{\sqrt{x-2}-\sqrt{x-1}}{\sqrt{x-2}+\sqrt{x-1}}\right| - \frac{\sqrt{x-2}\sqrt{x-1}}{x-2-(x-1)} + C=21lnx−2+x−1x−2−x−1−x−2−(x−1)x−2x−1+C=12ln∣x−2−x−1x−2+x−1∣+(x−2)(x−1)+C= \frac{1}{2} \ln\left|\frac{\sqrt{x-2}-\sqrt{x-1}}{\sqrt{x-2}+\sqrt{x-1}}\right| + \sqrt{(x-2)(x-1)} + C=21lnx−2+x−1x−2−x−1+(x−2)(x−1)+Cx−2−x−1x−2+x−1=(x−2−x−1)2x−2−(x−1)=x−2−2(x−2)(x−1)+x−1−1=−2x+3+2(x−2)(x−1)\frac{\sqrt{x-2}-\sqrt{x-1}}{\sqrt{x-2}+\sqrt{x-1}} = \frac{(\sqrt{x-2}-\sqrt{x-1})^2}{x-2-(x-1)} = \frac{x-2-2\sqrt{(x-2)(x-1)}+x-1}{-1} = -2x+3+2\sqrt{(x-2)(x-1)}x−2+x−1x−2−x−1=x−2−(x−1)(x−2−x−1)2=−1x−2−2(x−2)(x−1)+x−1=−2x+3+2(x−2)(x−1)=12ln∣−2x+3+2(x−2)(x−1)∣+(x−2)(x−1)+C= \frac{1}{2} \ln\left| -2x+3+2\sqrt{(x-2)(x-1)} \right| + \sqrt{(x-2)(x-1)} + C=21ln−2x+3+2(x−2)(x−1)+(x−2)(x−1)+C3. 最終的な答え12ln∣−2x+3+2(x−2)(x−1)∣+(x−2)(x−1)+C\frac{1}{2} \ln\left| -2x+3+2\sqrt{(x-2)(x-1)} \right| + \sqrt{(x-2)(x-1)} + C21ln−2x+3+2(x−2)(x−1)+(x−2)(x−1)+Cまたは(x−1)(x−2)+ln(x−1−x−2)+C\sqrt{(x-1)(x-2)} + \ln(\sqrt{x-1} - \sqrt{x-2}) + C(x−1)(x−2)+ln(x−1−x−2)+C