以下の連立方程式を解く問題です。 $ \begin{cases} y = x + 7 \\ y = 3x + 15 \end{cases} $

代数学連立方程式代入法一次方程式
2025/8/3

1. 問題の内容

以下の連立方程式を解く問題です。
\begin{cases}
y = x + 7 \\
y = 3x + 15
\end{cases}

2. 解き方の手順

この連立方程式は代入法で解くことができます。
ステップ1:
2つの式はどちらも y=y = の形になっているので、yy を消去するために、一方の式をもう一方の式に代入します。ここでは、1番目の式を2番目の式に代入します。
x + 7 = 3x + 15
ステップ2:
xx について解きます。まず、xx の項を一方に、定数項をもう一方に集めます。
x - 3x = 15 - 7
-2x = 8
x = \frac{8}{-2}
x = -4
ステップ3:
求めた xx の値をどちらかの式に代入して yy を求めます。ここでは1番目の式に代入します。
y = -4 + 7
y = 3

3. 最終的な答え

x=4x = -4
y=3y = 3

「代数学」の関連問題

与えられた数式の値を計算する問題です。数式は以下です。 $1 - \frac{1 - \frac{1}{a} - \frac{2}{a+1}}{\frac{1}{a} - \frac{2}{a-1}}...

分数式式の計算計算問題代数
2025/8/3

与えられた繁分数を計算する問題です。式は以下の通りです。 $1 - \frac{\frac{1}{a} - \frac{2}{a+1}}{\frac{1}{a} - \frac{2}{a-1}}$

分数式の計算代数計算
2025/8/3

6つの二次方程式を解の公式を用いて解く問題です。 (1) $x^2+x-5=0$ (2) $x^2+5x+5=0$ (3) $3x^2-7x+3=0$ (4) $x^2-2x=3(x-1)$ (5) ...

二次方程式解の公式
2025/8/3

$\mathbb{R}^2$ 内のベクトルの組 (ア), (イ), (ウ) がそれぞれ線形独立かどうかを判定する。説明は不要。

線形代数線形独立ベクトル線形従属ベクトル空間
2025/8/3

与えられた二次方程式を解き、$x$ の値を求める問題です。

二次方程式因数分解方程式の解法
2025/8/3

36人の生徒が、3人の班と4人の班に分かれて清掃活動を行った。全部でちょうど10班できたとき、3人の班と4人の班がそれぞれ何班ずつできたか求める問題です。

連立方程式文章問題方程式線形代数
2025/8/3

1個120円のりんごと1個80円のみかんを合わせて15個買ったところ、代金の合計は1480円だった。りんごとみかんをそれぞれ何個買ったか求める問題。

連立方程式文章問題方程式
2025/8/3

与えられた二次方程式を解の公式を用いて解く。具体的には、以下の6つの方程式の解を求める。 (1) $x^2 - 3x + 1 = 0$ (2) $x^2 + x - 4 = 0$ (3) $2x^2 ...

二次方程式解の公式
2025/8/3

与えられた連立方程式を解いて、$x$ と $y$ の値を求めます。連立方程式は以下の通りです。 $3x - 4(x+y) = 8$ $3x - 2y = 18$

連立方程式一次方程式代入法消去法
2025/8/3

以下の5つの問題に答え、それぞれの空欄に当てはまる選択肢を解答群から選びます。 (1) $A = x^2 - 3x - 4$, $B = 2x - 1$, $C = -4x - 5$ のとき、$A -...

多項式の計算展開因数分解絶対値
2025/8/3