男子4人、女子3人、合計7人の中から3人を選ぶ場合の数を求める問題です。 (1) 3人の選び方の総数を求めます。 (2) 男子2人、女子1人を選ぶ選び方の数を求めます。 (3) 少なくとも男子を1人選ぶ選び方の数を求めます。
2025/8/3
1. 問題の内容
男子4人、女子3人、合計7人の中から3人を選ぶ場合の数を求める問題です。
(1) 3人の選び方の総数を求めます。
(2) 男子2人、女子1人を選ぶ選び方の数を求めます。
(3) 少なくとも男子を1人選ぶ選び方の数を求めます。
2. 解き方の手順
(1) 3人の選び方の総数
7人から3人を選ぶ組み合わせなので、組み合わせの公式を利用します。
組み合わせの公式は、 です。
この問題では、、なので、
通り
(2) 男子2人、女子1人を選ぶ選び方
男子4人から2人を選ぶ組み合わせと、女子3人から1人を選ぶ組み合わせの積を求めます。
男子4人から2人を選ぶ組み合わせは、 通り
女子3人から1人を選ぶ組み合わせは、 通り
したがって、男子2人、女子1人を選ぶ選び方は、 通り
(3) 少なくとも男子を1人選ぶ選び方
全体の選び方から、女子3人だけを選ぶ選び方を引けば求められます。
女子3人だけを選ぶ選び方は、 通り
したがって、少なくとも男子を1人選ぶ選び方は、 通り
3. 最終的な答え
(1) 35通り
(2) 18通り
(3) 34通り