与えられた繁分数式を簡略化する問題です。問題の式は以下です。 $1 - \frac{\frac{1}{a} - \frac{2}{a+1}}{\frac{1}{a} - \frac{2}{a-1}}$代数学分数式式の簡略化代数計算2025/8/31. 問題の内容与えられた繁分数式を簡略化する問題です。問題の式は以下です。1−1a−2a+11a−2a−11 - \frac{\frac{1}{a} - \frac{2}{a+1}}{\frac{1}{a} - \frac{2}{a-1}}1−a1−a−12a1−a+122. 解き方の手順まず、分子と分母をそれぞれ計算します。分子:1a−2a+1=(a+1)−2aa(a+1)=a+1−2aa(a+1)=1−aa(a+1)\frac{1}{a} - \frac{2}{a+1} = \frac{(a+1) - 2a}{a(a+1)} = \frac{a+1-2a}{a(a+1)} = \frac{1-a}{a(a+1)}a1−a+12=a(a+1)(a+1)−2a=a(a+1)a+1−2a=a(a+1)1−a分母:1a−2a−1=(a−1)−2aa(a−1)=a−1−2aa(a−1)=−a−1a(a−1)=−(a+1)a(a−1)\frac{1}{a} - \frac{2}{a-1} = \frac{(a-1) - 2a}{a(a-1)} = \frac{a-1-2a}{a(a-1)} = \frac{-a-1}{a(a-1)} = \frac{-(a+1)}{a(a-1)}a1−a−12=a(a−1)(a−1)−2a=a(a−1)a−1−2a=a(a−1)−a−1=a(a−1)−(a+1)次に、元の式に代入します。1−1−aa(a+1)−(a+1)a(a−1)=1−1−aa(a+1)⋅a(a−1)−(a+1)=1−(1−a)(a−1)−(a+1)(a+1)1 - \frac{\frac{1-a}{a(a+1)}}{\frac{-(a+1)}{a(a-1)}} = 1 - \frac{1-a}{a(a+1)} \cdot \frac{a(a-1)}{-(a+1)} = 1 - \frac{(1-a)(a-1)}{-(a+1)(a+1)}1−a(a−1)−(a+1)a(a+1)1−a=1−a(a+1)1−a⋅−(a+1)a(a−1)=1−−(a+1)(a+1)(1−a)(a−1)ここで、1−a=−(a−1)1-a = -(a-1)1−a=−(a−1) であることを利用します。1−−(a−1)(a−1)−(a+1)2=1−(a−1)2(a+1)2=1−a2−2a+1a2+2a+11 - \frac{-(a-1)(a-1)}{-(a+1)^2} = 1 - \frac{(a-1)^2}{(a+1)^2} = 1 - \frac{a^2 - 2a + 1}{a^2 + 2a + 1}1−−(a+1)2−(a−1)(a−1)=1−(a+1)2(a−1)2=1−a2+2a+1a2−2a+1通分して計算します。a2+2a+1−(a2−2a+1)a2+2a+1=a2+2a+1−a2+2a−1a2+2a+1=4aa2+2a+1=4a(a+1)2\frac{a^2 + 2a + 1 - (a^2 - 2a + 1)}{a^2 + 2a + 1} = \frac{a^2 + 2a + 1 - a^2 + 2a - 1}{a^2 + 2a + 1} = \frac{4a}{a^2 + 2a + 1} = \frac{4a}{(a+1)^2}a2+2a+1a2+2a+1−(a2−2a+1)=a2+2a+1a2+2a+1−a2+2a−1=a2+2a+14a=(a+1)24a3. 最終的な答え4a(a+1)2\frac{4a}{(a+1)^2}(a+1)24a