与えられた式 $(x+1)(x^2+x+1)(x^2-x+1)^2$ を展開せよ。代数学多項式の展開因数分解式の計算2025/8/4はい、承知いたしました。画像にある問題のうち、(2)の問題を解きます。1. 問題の内容与えられた式 (x+1)(x2+x+1)(x2−x+1)2(x+1)(x^2+x+1)(x^2-x+1)^2(x+1)(x2+x+1)(x2−x+1)2 を展開せよ。2. 解き方の手順まず、(x2−x+1)2(x^2 - x + 1)^2(x2−x+1)2を展開します。(x2−x+1)2=(x2−x+1)(x2−x+1)(x^2 - x + 1)^2 = (x^2 - x + 1)(x^2 - x + 1)(x2−x+1)2=(x2−x+1)(x2−x+1)=x4−x3+x2−x3+x2−x+x2−x+1= x^4 - x^3 + x^2 - x^3 + x^2 - x + x^2 - x + 1=x4−x3+x2−x3+x2−x+x2−x+1=x4−2x3+3x2−2x+1= x^4 - 2x^3 + 3x^2 - 2x + 1=x4−2x3+3x2−2x+1次に、与えられた式に代入します。(x+1)(x2+x+1)(x2−x+1)2=(x+1)(x2+x+1)(x4−2x3+3x2−2x+1)(x+1)(x^2+x+1)(x^2-x+1)^2 = (x+1)(x^2+x+1)(x^4-2x^3+3x^2-2x+1)(x+1)(x2+x+1)(x2−x+1)2=(x+1)(x2+x+1)(x4−2x3+3x2−2x+1)ここで、(x+1)(x2+x+1)(x+1)(x^2+x+1)(x+1)(x2+x+1)を計算します。(x+1)(x2+x+1)=x3+x2+x+x2+x+1=x3+2x2+2x+1(x+1)(x^2+x+1) = x^3 + x^2 + x + x^2 + x + 1 = x^3 + 2x^2 + 2x + 1(x+1)(x2+x+1)=x3+x2+x+x2+x+1=x3+2x2+2x+1したがって、(x+1)(x2+x+1)(x4−2x3+3x2−2x+1)=(x3+2x2+2x+1)(x4−2x3+3x2−2x+1)(x+1)(x^2+x+1)(x^4-2x^3+3x^2-2x+1) = (x^3 + 2x^2 + 2x + 1)(x^4-2x^3+3x^2-2x+1)(x+1)(x2+x+1)(x4−2x3+3x2−2x+1)=(x3+2x2+2x+1)(x4−2x3+3x2−2x+1)これを展開します。=x7−2x6+3x5−2x4+x3+2x6−4x5+6x4−4x3+2x2+2x5−4x4+6x3−4x2+2x+x4−2x3+3x2−2x+1= x^7 - 2x^6 + 3x^5 - 2x^4 + x^3 + 2x^6 - 4x^5 + 6x^4 - 4x^3 + 2x^2 + 2x^5 - 4x^4 + 6x^3 - 4x^2 + 2x + x^4 - 2x^3 + 3x^2 - 2x + 1=x7−2x6+3x5−2x4+x3+2x6−4x5+6x4−4x3+2x2+2x5−4x4+6x3−4x2+2x+x4−2x3+3x2−2x+1=x7+(−2+2)x6+(3−4+2)x5+(−2+6−4+1)x4+(1−4+6−2)x3+(2−4+3)x2+(2−2)x+1= x^7 + (-2+2)x^6 + (3-4+2)x^5 + (-2+6-4+1)x^4 + (1-4+6-2)x^3 + (2-4+3)x^2 + (2-2)x + 1=x7+(−2+2)x6+(3−4+2)x5+(−2+6−4+1)x4+(1−4+6−2)x3+(2−4+3)x2+(2−2)x+1=x7+x5+x4+x3+x2+1= x^7 + x^5 + x^4 + x^3 + x^2 + 1=x7+x5+x4+x3+x2+13. 最終的な答えx7+x5+x4+x3+x2+1x^7 + x^5 + x^4 + x^3 + x^2 + 1x7+x5+x4+x3+x2+1