$\int (\sin x + \sin 2x)^2 dx$ を計算します。解析学積分三角関数置換積分定積分2025/8/41. 問題の内容∫(sinx+sin2x)2dx\int (\sin x + \sin 2x)^2 dx∫(sinx+sin2x)2dx を計算します。2. 解き方の手順まず、(sinx+sin2x)2(\sin x + \sin 2x)^2(sinx+sin2x)2 を展開します。(sinx+sin2x)2=sin2x+2sinxsin2x+sin22x(\sin x + \sin 2x)^2 = \sin^2 x + 2\sin x \sin 2x + \sin^2 2x(sinx+sin2x)2=sin2x+2sinxsin2x+sin22xsin2x=2sinxcosx\sin 2x = 2\sin x \cos xsin2x=2sinxcosx を用いると、2sinxsin2x=2sinx(2sinxcosx)=4sin2xcosx2\sin x \sin 2x = 2\sin x (2\sin x \cos x) = 4 \sin^2 x \cos x2sinxsin2x=2sinx(2sinxcosx)=4sin2xcosxしたがって、∫(sinx+sin2x)2dx=∫(sin2x+4sin2xcosx+sin22x)dx\int (\sin x + \sin 2x)^2 dx = \int (\sin^2 x + 4\sin^2 x \cos x + \sin^2 2x) dx∫(sinx+sin2x)2dx=∫(sin2x+4sin2xcosx+sin22x)dxsin2x=1−cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}sin2x=21−cos2xsin22x=1−cos4x2\sin^2 2x = \frac{1 - \cos 4x}{2}sin22x=21−cos4x∫sin2xdx=∫1−cos2x2dx=12x−14sin2x+C1\int \sin^2 x dx = \int \frac{1 - \cos 2x}{2} dx = \frac{1}{2}x - \frac{1}{4}\sin 2x + C_1∫sin2xdx=∫21−cos2xdx=21x−41sin2x+C1∫sin22xdx=∫1−cos4x2dx=12x−18sin4x+C2\int \sin^2 2x dx = \int \frac{1 - \cos 4x}{2} dx = \frac{1}{2}x - \frac{1}{8}\sin 4x + C_2∫sin22xdx=∫21−cos4xdx=21x−81sin4x+C2∫4sin2xcosxdx=4∫sin2xcosxdx\int 4\sin^2 x \cos x dx = 4\int \sin^2 x \cos x dx∫4sin2xcosxdx=4∫sin2xcosxdxu=sinxu = \sin xu=sinx と置換すると、 du=cosxdxdu = \cos x dxdu=cosxdx4∫u2du=4(u33)+C3=43sin3x+C34\int u^2 du = 4(\frac{u^3}{3}) + C_3 = \frac{4}{3}\sin^3 x + C_34∫u2du=4(3u3)+C3=34sin3x+C3よって、∫(sin2x+4sin2xcosx+sin22x)dx=12x−14sin2x+43sin3x+12x−18sin4x+C\int (\sin^2 x + 4\sin^2 x \cos x + \sin^2 2x) dx = \frac{1}{2}x - \frac{1}{4}\sin 2x + \frac{4}{3}\sin^3 x + \frac{1}{2}x - \frac{1}{8}\sin 4x + C∫(sin2x+4sin2xcosx+sin22x)dx=21x−41sin2x+34sin3x+21x−81sin4x+C=x−14sin2x+43sin3x−18sin4x+C= x - \frac{1}{4}\sin 2x + \frac{4}{3}\sin^3 x - \frac{1}{8}\sin 4x + C=x−41sin2x+34sin3x−81sin4x+C3. 最終的な答えx−14sin2x+43sin3x−18sin4x+Cx - \frac{1}{4}\sin 2x + \frac{4}{3}\sin^3 x - \frac{1}{8}\sin 4x + Cx−41sin2x+34sin3x−81sin4x+C