定積分 $\int_0^\pi \sin x \cos(2nx) dx$ を計算する問題です。ここで $n$ は整数とします。解析学定積分三角関数積和の公式積分計算2025/8/41. 問題の内容定積分 ∫0πsinxcos(2nx)dx\int_0^\pi \sin x \cos(2nx) dx∫0πsinxcos(2nx)dx を計算する問題です。ここで nnn は整数とします。2. 解き方の手順積和の公式を利用して積分を計算します。積和の公式は以下の通りです。sinAcosB=12[sin(A+B)+sin(A−B)]\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]sinAcosB=21[sin(A+B)+sin(A−B)]この公式を適用すると、sinxcos(2nx)=12[sin(x+2nx)+sin(x−2nx)]=12[sin((1+2n)x)+sin((1−2n)x)]\sin x \cos(2nx) = \frac{1}{2} [\sin(x+2nx) + \sin(x-2nx)] = \frac{1}{2} [\sin((1+2n)x) + \sin((1-2n)x)]sinxcos(2nx)=21[sin(x+2nx)+sin(x−2nx)]=21[sin((1+2n)x)+sin((1−2n)x)]したがって、積分は以下のようになります。∫0πsinxcos(2nx)dx=12∫0π[sin((1+2n)x)+sin((1−2n)x)]dx\int_0^\pi \sin x \cos(2nx) dx = \frac{1}{2} \int_0^\pi [\sin((1+2n)x) + \sin((1-2n)x)] dx∫0πsinxcos(2nx)dx=21∫0π[sin((1+2n)x)+sin((1−2n)x)]dx=12[−cos((1+2n)x)1+2n−cos((1−2n)x)1−2n]0π= \frac{1}{2} \left[ -\frac{\cos((1+2n)x)}{1+2n} - \frac{\cos((1-2n)x)}{1-2n} \right]_0^\pi=21[−1+2ncos((1+2n)x)−1−2ncos((1−2n)x)]0π=12[−cos((1+2n)π)1+2n−cos((1−2n)π)1−2n+cos(0)1+2n+cos(0)1−2n]= \frac{1}{2} \left[ -\frac{\cos((1+2n)\pi)}{1+2n} - \frac{\cos((1-2n)\pi)}{1-2n} + \frac{\cos(0)}{1+2n} + \frac{\cos(0)}{1-2n} \right]=21[−1+2ncos((1+2n)π)−1−2ncos((1−2n)π)+1+2ncos(0)+1−2ncos(0)]cos(kπ)=(−1)k\cos(k\pi) = (-1)^kcos(kπ)=(−1)k より、=12[−(−1)1+2n1+2n−(−1)1−2n1−2n+11+2n+11−2n]= \frac{1}{2} \left[ -\frac{(-1)^{1+2n}}{1+2n} - \frac{(-1)^{1-2n}}{1-2n} + \frac{1}{1+2n} + \frac{1}{1-2n} \right]=21[−1+2n(−1)1+2n−1−2n(−1)1−2n+1+2n1+1−2n1](−1)1+2n=(−1)(−1)2n=−1(-1)^{1+2n} = (-1) (-1)^{2n} = -1(−1)1+2n=(−1)(−1)2n=−1(−1)1−2n=(−1)(−1)−2n=−1(-1)^{1-2n} = (-1) (-1)^{-2n} = -1(−1)1−2n=(−1)(−1)−2n=−1なので、=12[11+2n+11−2n+11+2n+11−2n]= \frac{1}{2} \left[ \frac{1}{1+2n} + \frac{1}{1-2n} + \frac{1}{1+2n} + \frac{1}{1-2n} \right]=21[1+2n1+1−2n1+1+2n1+1−2n1]=11+2n+11−2n= \frac{1}{1+2n} + \frac{1}{1-2n}=1+2n1+1−2n1=(1−2n)+(1+2n)(1+2n)(1−2n)=21−4n2= \frac{(1-2n) + (1+2n)}{(1+2n)(1-2n)} = \frac{2}{1-4n^2}=(1+2n)(1−2n)(1−2n)+(1+2n)=1−4n223. 最終的な答え∫0πsinxcos(2nx)dx=21−4n2\int_0^\pi \sin x \cos(2nx) dx = \frac{2}{1-4n^2}∫0πsinxcos(2nx)dx=1−4n22