$(3\sqrt{2} + 1)^2$ を計算する問題です。

代数学展開平方根計算
2025/8/4

1. 問題の内容

(32+1)2(3\sqrt{2} + 1)^2 を計算する問題です。

2. 解き方の手順

与えられた式を展開します。(a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2 の公式を利用します。
a=32a = 3\sqrt{2}, b=1b = 1 とすると、
(32+1)2=(32)2+2(32)(1)+12(3\sqrt{2} + 1)^2 = (3\sqrt{2})^2 + 2(3\sqrt{2})(1) + 1^2
(32)2=32(2)2=92=18(3\sqrt{2})^2 = 3^2 \cdot (\sqrt{2})^2 = 9 \cdot 2 = 18
2(32)(1)=622(3\sqrt{2})(1) = 6\sqrt{2}
12=11^2 = 1
したがって、
(32+1)2=18+62+1(3\sqrt{2} + 1)^2 = 18 + 6\sqrt{2} + 1
=19+62= 19 + 6\sqrt{2}

3. 最終的な答え

19+6219 + 6\sqrt{2}

「代数学」の関連問題

自然数 $n$ に対して、$(1+x+x^2+x^3+x^4)^n$ を展開したときの $x^4$ の係数について、 (1) $n=3$ の場合、 (2) $n=4$ の場合、 (3) 一般の場合、 ...

多項式の展開二項定理組み合わせ
2025/8/4

$n$ を自然数とする。$(1+x+x^2+x^3+x^4)^n$ を展開したときの $x^4$ の係数について、以下の問いに答える。 (1) $n=3$ のとき、$x^4$ の係数を求める。 (2)...

二項定理多項式展開係数組み合わせ
2025/8/4

数列 $\{a_n\}$ が与えられており、その一般項を求める問題と、与えられた式を満たす定数 $b$ と $c$ を求める問題です。

数列一般項分数式連立方程式
2025/8/4

数列 $\{a_n\}$ があり、$b_n = \log a_n$ と定義されている。$a_1, a_2, a_3, \dots, a_n$ の積が $(a_n)^k$ となるような関係があり、$\l...

数列対数漸化式
2025/8/4

複素数 $z = 4\alpha + 3\beta - 6\gamma$ が与えられているとき、$w = \frac{z-\alpha}{\gamma-\alpha}$ で定義される複素数 $w$ に...

複素数絶対値偏角複素平面
2025/8/4

画像に写っている12個の数式を展開する問題です。

展開多項式分配法則公式
2025/8/4

数列 $\{a_n\}$ は初項 $\frac{8}{3}$、公差 $\frac{5}{3}$ の等差数列であり、数列 $\{b_n\}$ は初項 $3$、公比 $\frac{4}{3}$ の等比数列...

数列等差数列等比数列和の公式
2025/8/4

画像に書かれた18個の数式を展開する問題です。

式の展開多項式展開の公式
2025/8/4

与えられた数式を展開する問題です。展開する数式は以下の通りです。 (1) $(x+4y)^2$ (2) $(x+2)(y-3)$ (3) $(x+5)(x-4)$ (4) $(x+6)(x-6)$ (...

展開多項式分配法則
2025/8/4

与えられた数式 $\frac{3x+7}{5} \times 10$ を簡単にします。

式の計算分数一次式
2025/8/4