関数 $y = 5x^2 - 2x - 1$ のグラフの接線のうち、直線 $y = 8x + 9$ に平行なものを求めなさい。

解析学微分接線二次関数
2025/4/5

1. 問題の内容

関数 y=5x22x1y = 5x^2 - 2x - 1 のグラフの接線のうち、直線 y=8x+9y = 8x + 9 に平行なものを求めなさい。

2. 解き方の手順

まず、直線 y=8x+9y = 8x + 9 に平行な直線の傾きは8である。
関数 y=5x22x1y = 5x^2 - 2x - 1 を微分して、その傾きが8になるような xx の値を求める。
yyxx で微分すると、
dydx=10x2\frac{dy}{dx} = 10x - 2
これが8に等しくなるような xx の値を求める。
10x2=810x - 2 = 8
10x=1010x = 10
x=1x = 1
x=1x = 1 のときの yy の値を求める。
y=5(1)22(1)1=521=2y = 5(1)^2 - 2(1) - 1 = 5 - 2 - 1 = 2
接点の座標は (1,2)(1, 2) である。
求める接線は、傾きが8で (1,2)(1, 2) を通るので、その方程式は
y2=8(x1)y - 2 = 8(x - 1)
y2=8x8y - 2 = 8x - 8
y=8x6y = 8x - 6

3. 最終的な答え

y=8x6y = 8x - 6

「解析学」の関連問題

関数 $f(x) = (x-1)^2$($x \geq 1$)の逆関数を $g(x)$ とします。 (1) $g(x)$ を求めます。 (2) $(f \circ g)(x)$ と $(g \circ...

逆関数関数の合成定義域値域
2025/5/14

関数 $f(x) = x[x]$ の $x=0$ と $x=1$ における連続性を調べる問題です。ここで、$[x]$ は $x$ を超えない最大の整数(ガウス記号)を表します。

関数の連続性極限ガウス記号関数の評価
2025/5/14

関数 $y = \log(1+x)$ の第 $n$ 次導関数を求める問題です。ただし、対数は自然対数とします。

導関数対数関数微分
2025/5/14

2変数関数 $z = e^{ax-y}$ が与えられたとき、$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}...

偏微分2変数関数偏微分方程式
2025/5/14

関数 $y = \log(1+x)$ の第n次導関数を求める問題です。ただし、対数は自然対数とします。

導関数対数関数微分一般式
2025/5/14

与えられた2つの微分方程式の一般解を求める問題です。 (1) $\frac{dy}{dx} = \frac{3x - 2y}{2x + y}$ (2) $\frac{dy}{dx} = \frac{3...

微分方程式同次形変数分離法積分
2025/5/14

与えられた3つの二変数関数 $f(x, y)$ について、それぞれの偏導関数 $\frac{\partial f}{\partial x}$ と $\frac{\partial f}{\partial...

偏微分多変数関数微分
2025/5/14

与えられた式 $y = e^{\log 2} + 2e^{-\log 2}$ を簡略化して、$y$ の値を求めます。ここで、対数は自然対数 (底が $e$) であると仮定します。

指数関数対数関数式の簡略化自然対数
2025/5/14

次の極限を計算します。 $\lim_{x \to 0} \frac{\sin 3x - \sin x}{x}$

極限三角関数sin微分
2025/5/14

$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$ を示してください。

極限三角関数挟みうちの原理ロピタルの定理
2025/5/14