数列 $1^2 \cdot n, 2^2 \cdot (n-1), 3^2 \cdot (n-2), \dots, (n-1)^2 \cdot 2, n^2 \cdot 1$ の和を求めます。代数学数列シグマ和公式2025/8/41. 問題の内容数列 12⋅n,22⋅(n−1),32⋅(n−2),…,(n−1)2⋅2,n2⋅11^2 \cdot n, 2^2 \cdot (n-1), 3^2 \cdot (n-2), \dots, (n-1)^2 \cdot 2, n^2 \cdot 112⋅n,22⋅(n−1),32⋅(n−2),…,(n−1)2⋅2,n2⋅1 の和を求めます。2. 解き方の手順一般項を aka_kak とすると、ak=k2(n−k+1)a_k = k^2(n-k+1)ak=k2(n−k+1) と表せます。数列の和 SSS は、S=∑k=1nak=∑k=1nk2(n−k+1)S = \sum_{k=1}^{n} a_k = \sum_{k=1}^{n} k^2(n-k+1)S=∑k=1nak=∑k=1nk2(n−k+1)と表せます。S=∑k=1n(nk2−k3+k2)S = \sum_{k=1}^{n} (nk^2 - k^3 + k^2)S=∑k=1n(nk2−k3+k2)S=n∑k=1nk2−∑k=1nk3+∑k=1nk2S = n \sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k^3 + \sum_{k=1}^{n} k^2S=n∑k=1nk2−∑k=1nk3+∑k=1nk2S=(n+1)∑k=1nk2−∑k=1nk3S = (n+1) \sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k^3S=(n+1)∑k=1nk2−∑k=1nk3ここで、∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk3=(n(n+1)2)2=n2(n+1)24\sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2 = \frac{n^2(n+1)^2}{4}∑k=1nk3=(2n(n+1))2=4n2(n+1)2なので、S=(n+1)n(n+1)(2n+1)6−n2(n+1)24S = (n+1) \frac{n(n+1)(2n+1)}{6} - \frac{n^2(n+1)^2}{4}S=(n+1)6n(n+1)(2n+1)−4n2(n+1)2S=n(n+1)212[2(2n+1)−3n]S = \frac{n(n+1)^2}{12} [2(2n+1) - 3n]S=12n(n+1)2[2(2n+1)−3n]S=n(n+1)212(4n+2−3n)S = \frac{n(n+1)^2}{12} (4n+2 - 3n)S=12n(n+1)2(4n+2−3n)S=n(n+1)2(n+2)12S = \frac{n(n+1)^2(n+2)}{12}S=12n(n+1)2(n+2)3. 最終的な答えn(n+1)2(n+2)12\frac{n(n+1)^2(n+2)}{12}12n(n+1)2(n+2)