次の循環小数を分数で表す問題です。 (1) $0.\dot{5}$ (2) $0.1\dot{9}$ (3) $0.\dot{2}\dot{7}$算数分数循環小数小数数と計算2025/8/41. 問題の内容次の循環小数を分数で表す問題です。(1) 0.5˙0.\dot{5}0.5˙(2) 0.19˙0.1\dot{9}0.19˙(3) 0.2˙7˙0.\dot{2}\dot{7}0.2˙7˙2. 解き方の手順(1) x=0.5˙x = 0.\dot{5}x=0.5˙ とおくと、x=0.555...x = 0.555...x=0.555...10x=5.555...10x = 5.555...10x=5.555...10x−x=5.555...−0.555...10x - x = 5.555... - 0.555...10x−x=5.555...−0.555...9x=59x = 59x=5x=59x = \frac{5}{9}x=95(2) x=0.19˙x = 0.1\dot{9}x=0.19˙ とおくと、x=0.1999...x = 0.1999...x=0.1999...10x=1.999...10x = 1.999...10x=1.999...100x=19.999...100x = 19.999...100x=19.999...100x−10x=19.999...−1.999...100x - 10x = 19.999... - 1.999...100x−10x=19.999...−1.999...90x=1890x = 1890x=18x=1890=15x = \frac{18}{90} = \frac{1}{5}x=9018=51(3) x=0.2˙7˙x = 0.\dot{2}\dot{7}x=0.2˙7˙ とおくと、x=0.272727...x = 0.272727...x=0.272727...100x=27.272727...100x = 27.272727...100x=27.272727...100x−x=27.272727...−0.272727...100x - x = 27.272727... - 0.272727...100x−x=27.272727...−0.272727...99x=2799x = 2799x=27x=2799=311x = \frac{27}{99} = \frac{3}{11}x=9927=1133. 最終的な答え(1) 59\frac{5}{9}95(2) 15\frac{1}{5}51(3) 311\frac{3}{11}113