(1) 係数行列Aの行列式|A|を計算します。
A = ( 2 − 1 1 1 1 2 1 − 2 1 ) A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 1 & 2 \\ 1 & -2 & 1 \end{pmatrix} A = 2 1 1 − 1 1 − 2 1 2 1 ∣ A ∣ = 2 ( 1 ⋅ 1 − 2 ⋅ ( − 2 ) ) − ( − 1 ) ( 1 ⋅ 1 − 2 ⋅ 1 ) + 1 ( 1 ⋅ ( − 2 ) − 1 ⋅ 1 ) = 2 ( 1 + 4 ) + ( 1 − 2 ) + ( − 2 − 1 ) = 2 ( 5 ) − 1 − 3 = 10 − 1 − 3 = 6 |A| = 2(1\cdot1 - 2\cdot(-2)) - (-1)(1\cdot1 - 2\cdot1) + 1(1\cdot(-2) - 1\cdot1) = 2(1+4) + (1-2) + (-2-1) = 2(5) - 1 - 3 = 10 - 1 - 3 = 6 ∣ A ∣ = 2 ( 1 ⋅ 1 − 2 ⋅ ( − 2 )) − ( − 1 ) ( 1 ⋅ 1 − 2 ⋅ 1 ) + 1 ( 1 ⋅ ( − 2 ) − 1 ⋅ 1 ) = 2 ( 1 + 4 ) + ( 1 − 2 ) + ( − 2 − 1 ) = 2 ( 5 ) − 1 − 3 = 10 − 1 − 3 = 6
(2) xの値を求めます。クラメルの公式より、xは係数行列Aの第1列を定数項で置き換えた行列の行列式を|A|で割ったものです。
x = 1 ∣ A ∣ ∣ 3 − 1 1 9 1 2 0 − 2 1 ∣ x = \frac{1}{|A|} \begin{vmatrix} 3 & -1 & 1 \\ 9 & 1 & 2 \\ 0 & -2 & 1 \end{vmatrix} x = ∣ A ∣ 1 3 9 0 − 1 1 − 2 1 2 1 x = 1 6 [ 3 ( 1 ⋅ 1 − 2 ⋅ ( − 2 ) ) − ( − 1 ) ( 9 ⋅ 1 − 2 ⋅ 0 ) + 1 ( 9 ⋅ ( − 2 ) − 1 ⋅ 0 ) ] = 1 6 [ 3 ( 1 + 4 ) + ( 9 − 0 ) + ( − 18 − 0 ) ] = 1 6 [ 3 ( 5 ) + 9 − 18 ] = 1 6 [ 15 + 9 − 18 ] = 1 6 [ 6 ] = 1 x = \frac{1}{6} [3(1\cdot1 - 2\cdot(-2)) - (-1)(9\cdot1 - 2\cdot0) + 1(9\cdot(-2) - 1\cdot0)] = \frac{1}{6} [3(1+4) + (9-0) + (-18-0)] = \frac{1}{6} [3(5) + 9 - 18] = \frac{1}{6} [15 + 9 - 18] = \frac{1}{6} [6] = 1 x = 6 1 [ 3 ( 1 ⋅ 1 − 2 ⋅ ( − 2 )) − ( − 1 ) ( 9 ⋅ 1 − 2 ⋅ 0 ) + 1 ( 9 ⋅ ( − 2 ) − 1 ⋅ 0 )] = 6 1 [ 3 ( 1 + 4 ) + ( 9 − 0 ) + ( − 18 − 0 )] = 6 1 [ 3 ( 5 ) + 9 − 18 ] = 6 1 [ 15 + 9 − 18 ] = 6 1 [ 6 ] = 1
(3) yの値を求めます。クラメルの公式より、yは係数行列Aの第2列を定数項で置き換えた行列の行列式を|A|で割ったものです。
y = 1 ∣ A ∣ ∣ 2 3 1 1 9 2 1 0 1 ∣ y = \frac{1}{|A|} \begin{vmatrix} 2 & 3 & 1 \\ 1 & 9 & 2 \\ 1 & 0 & 1 \end{vmatrix} y = ∣ A ∣ 1 2 1 1 3 9 0 1 2 1 y = 1 6 [ 2 ( 9 ⋅ 1 − 2 ⋅ 0 ) − 3 ( 1 ⋅ 1 − 2 ⋅ 1 ) + 1 ( 1 ⋅ 0 − 9 ⋅ 1 ) ] = 1 6 [ 2 ( 9 ) − 3 ( 1 − 2 ) + ( 0 − 9 ) ] = 1 6 [ 18 − 3 ( − 1 ) − 9 ] = 1 6 [ 18 + 3 − 9 ] = 1 6 [ 12 ] = 2 y = \frac{1}{6} [2(9\cdot1 - 2\cdot0) - 3(1\cdot1 - 2\cdot1) + 1(1\cdot0 - 9\cdot1)] = \frac{1}{6} [2(9) - 3(1-2) + (0-9)] = \frac{1}{6} [18 - 3(-1) - 9] = \frac{1}{6} [18 + 3 - 9] = \frac{1}{6} [12] = 2 y = 6 1 [ 2 ( 9 ⋅ 1 − 2 ⋅ 0 ) − 3 ( 1 ⋅ 1 − 2 ⋅ 1 ) + 1 ( 1 ⋅ 0 − 9 ⋅ 1 )] = 6 1 [ 2 ( 9 ) − 3 ( 1 − 2 ) + ( 0 − 9 )] = 6 1 [ 18 − 3 ( − 1 ) − 9 ] = 6 1 [ 18 + 3 − 9 ] = 6 1 [ 12 ] = 2
(4) zの値を求めます。クラメルの公式より、zは係数行列Aの第3列を定数項で置き換えた行列の行列式を|A|で割ったものです。
z = 1 ∣ A ∣ ∣ 2 − 1 3 1 1 9 1 − 2 0 ∣ z = \frac{1}{|A|} \begin{vmatrix} 2 & -1 & 3 \\ 1 & 1 & 9 \\ 1 & -2 & 0 \end{vmatrix} z = ∣ A ∣ 1 2 1 1 − 1 1 − 2 3 9 0 z = 1 6 [ 2 ( 1 ⋅ 0 − 9 ⋅ ( − 2 ) ) − ( − 1 ) ( 1 ⋅ 0 − 9 ⋅ 1 ) + 3 ( 1 ⋅ ( − 2 ) − 1 ⋅ 1 ) ] = 1 6 [ 2 ( 0 + 18 ) + ( 0 − 9 ) + 3 ( − 2 − 1 ) ] = 1 6 [ 2 ( 18 ) − 9 + 3 ( − 3 ) ] = 1 6 [ 36 − 9 − 9 ] = 1 6 [ 18 ] = 3 z = \frac{1}{6} [2(1\cdot0 - 9\cdot(-2)) - (-1)(1\cdot0 - 9\cdot1) + 3(1\cdot(-2) - 1\cdot1)] = \frac{1}{6} [2(0+18) + (0-9) + 3(-2-1)] = \frac{1}{6} [2(18) - 9 + 3(-3)] = \frac{1}{6} [36 - 9 - 9] = \frac{1}{6} [18] = 3 z = 6 1 [ 2 ( 1 ⋅ 0 − 9 ⋅ ( − 2 )) − ( − 1 ) ( 1 ⋅ 0 − 9 ⋅ 1 ) + 3 ( 1 ⋅ ( − 2 ) − 1 ⋅ 1 )] = 6 1 [ 2 ( 0 + 18 ) + ( 0 − 9 ) + 3 ( − 2 − 1 )] = 6 1 [ 2 ( 18 ) − 9 + 3 ( − 3 )] = 6 1 [ 36 − 9 − 9 ] = 6 1 [ 18 ] = 3