1次不等式 $\frac{4x+5}{9} < \frac{7x+12}{6}$ を解く問題です。

代数学1次不等式不等式代数
2025/8/4

1. 問題の内容

1次不等式 4x+59<7x+126\frac{4x+5}{9} < \frac{7x+12}{6} を解く問題です。

2. 解き方の手順

まず、不等式の両辺に分母の最小公倍数である18を掛けます。
184x+59<187x+126 18 \cdot \frac{4x+5}{9} < 18 \cdot \frac{7x+12}{6}
2(4x+5)<3(7x+12) 2(4x+5) < 3(7x+12)
括弧を展開します。
8x+10<21x+36 8x+10 < 21x+36
xxの項を左辺に、定数項を右辺に移行します。
8x21x<3610 8x - 21x < 36 - 10
13x<26 -13x < 26
両辺を-13で割ります。不等号の向きが変わることに注意してください。
x>2613 x > \frac{26}{-13}
x>2 x > -2

3. 最終的な答え

x>2x > -2

「代数学」の関連問題

$\sin \theta + \cos \theta = \frac{\sqrt{2}}{2}$ ($0^\circ < \theta < 180^\circ$) のとき、次の値を求めよ。 (1) $...

三角関数三角関数の相互関係加法定理
2025/8/4

A地点とB地点の間を自転車で往復する。行きは時速12km、帰りは時速15kmで、全体で6時間かかる。A地点とB地点の間の距離を$x$ kmとして、この距離$x$を求める。

方程式速さ距離時間一次方程式
2025/8/4

$\theta$は鋭角であるとき、以下の問題を解く。 (1) $\sin \theta = \frac{3}{4}$ のとき、$\cos \theta$ と $\tan \theta$ の値を求めよ。...

三角関数三角比相互関係鋭角
2025/8/4

点B, Cから直線ADに下ろした垂線の足をそれぞれH1, H2とする。直線DH1に関して点Dと対称な点をE1, 直線CH2に関して点Dと対称な点をE2とする。BD:DCの比、2次方程式の解を求める。ま...

二次方程式幾何解の判別
2025/8/4

$x$ と $y$ の間に $3x + y = 6$ という関係があるとき、以下の問いに答えます。 (1) $3x^2 + y^2$ の最小値を求めます。 (2) $x \geq 0$、$y \geq...

最大・最小二次関数平方完成不等式
2025/8/4

与えられた2つの行列の行列式を計算する問題です。 (1) 3x3の行列 $ \begin{vmatrix} 1 & 4 & -2 \\ 5 & 8 & 2 \\ 2 & -3 & 1 \end{vma...

行列行列式線形代数余因子展開
2025/8/4

$3x + y = 6$ という条件の下で、$3x^2 + y^2$ の最小値を求めます。

最小値二次関数平方完成連立方程式
2025/8/4

直線 $y = \frac{1}{5}x - 3$ が $x$ 軸と交わる点の座標を求めよ。

一次関数座標方程式
2025/8/4

家から1800m離れた駅まで20分で行くとき、歩く速さを毎分75m、走る速さを毎分100mとする。 (1) 歩く道のりを$a$ m、走る道のりを$b$ mとした連立方程式を解く。 (2) 歩いた時間を...

連立方程式文章問題距離時間速さ
2025/8/4

(1) 以下の連立一次方程式を掃き出し法を用いて解く。 $ \begin{cases} 2x + y - 3z = -5 \\ -x - 2y + 3z = 4 \\ x + 3y - 2z = 1 ...

線形代数連立一次方程式掃き出し法行列階数(ランク)
2025/8/4