与えられた連立方程式を解き、$x$と$y$の値を求める問題です。 連立方程式は以下の通りです。 $ \begin{cases} 2x + 2y = 11 \\ 6x - y = -2 \end{cases} $

代数学連立方程式加減法一次方程式
2025/8/5

1. 問題の内容

与えられた連立方程式を解き、xxyyの値を求める問題です。
連立方程式は以下の通りです。
\begin{cases}
2x + 2y = 11 \\
6x - y = -2
\end{cases}

2. 解き方の手順

加減法を用いて連立方程式を解きます。
まず、2番目の式を2倍します。
2(6x - y) = 2(-2)
12x - 2y = -4
次に、1番目の式と新しい2番目の式を足し合わせます。
(2x + 2y) + (12x - 2y) = 11 + (-4)
14x = 7
x = \frac{7}{14}
x = \frac{1}{2}
次に、x=12x = \frac{1}{2} を 1番目の式に代入して、yyの値を求めます。
2(\frac{1}{2}) + 2y = 11
1 + 2y = 11
2y = 10
y = \frac{10}{2}
y = 5

3. 最終的な答え

x=12x = \frac{1}{2}
y=5y = 5

「代数学」の関連問題

問題125は、和の公式を用いて、与えられた式を計算する問題です。 (1) $\sum_{k=1}^{n} (4k-5)$ を計算し、$\sum_{k=1}^{n} k$ の形に変形します。定数$c$も...

数列等差数列等比数列シグマ和の公式二次方程式
2025/8/5

与えられた線形変換 $T(x)$ に対して、指定された基に関する表現行列を求める問題です。問題は2つあります。 (1) $T(x) = \begin{bmatrix} 2 & 0 & 1 \\ -1 ...

線形代数線形変換表現行列基底
2025/8/5

与えられた連立方程式を解き、$x$ の値を求めます。

連立方程式一次方程式代入法加減法
2025/8/5

2次関数 $y = x^2 + 2mx + m - 2$ のグラフが、$x$ 軸の $x > -1$ の部分と $x < -1$ の部分で交わるような定数 $m$ の値の範囲を求める。与えられた条件か...

二次関数グラフ不等式判別式解の配置
2025/8/5

画像にある数列の問題を解きます。具体的には、等差数列と等比数列の関係、数列の和の計算(Σの計算)、等比数列の和、そして分数の数列の和を求める問題です。

数列等差数列等比数列Σ計算級数部分分数分解
2025/8/5

与えられた行列 $Q$ の逆行列 $Q^{-1}$ を求める問題です。行列 $Q$ は $ Q = \begin{bmatrix} 1 & 1 & 6 \\ 1 & 0 & 1 \\ 0 & 1 & ...

行列逆行列掃き出し法
2025/8/5

2次不等式 $x^2 - (a+2)x + 2a < 0$ (*)がある。ただし、$a$は定数とする。 (1) 2次不等式(*)は $(x - \boxed{ア})(x - \boxed{イ}) < ...

二次不等式因数分解不等式解の範囲
2025/8/5

2つの2次方程式 $x^2+(a+5)x+3+a^2=0$ と $x^2-(3-a)x+(a+1)^2=0$ について、片方の2次方程式のみが実数解を持つような $a$ の値の範囲を求めよ。

二次方程式判別式不等式実数解
2025/8/5

2つの2次方程式 $x^2 + (a+5)x + 3+a^2 = 0$ と $x^2 - (3-a)x + (a+1)^2 = 0$ がともに実数解を持つような $a$ の値の範囲を求めます。答えは「...

二次方程式判別式不等式解の範囲
2025/8/5

与えられた連立方程式を解き、$x$と$y$の値を求める問題です。

連立方程式一次方程式方程式
2025/8/5