(1) a2n−1=(n+1)2n−2, a2n=(n+1)2n−1 (2) ∑k=12nak=43(n+1)2n−1−3 ∑k=1nak は nが偶数の場合のみ答えられる。 ∑k=1nak=43(2n+1)22n−1−3 if n is even. ∑k=1nak=∑k=1n−1ak+an=43(2n−1+1)22n−1−1−3+an. an=a2m+1=(m+1)2m−1+2m−1=(m+2)2m−1=(2n+3)22n−3 ∑k=1nak=43(2n−1+1)22n−1−1−3+an=43(2n+1)22n−3−3+(2n+3)22n−3=83(n+1)22n−3−6+4(n+3)22n−3=8(7n+15)22n−3−6 最終的な答え:
a2n−1=(n+1)2n−2 a2n=(n+1)2n−1 ∑k=12nak=43(n+1)2n−1−3 ∑k=12n+1ak=8(7(2n+1)+15)222n+1−3−6=8(14n+22)2n−1−6=4(7n+11)2n−1−3 $\sum_{k=1}^n a_k = \begin{cases}
\frac{3(\frac{n}{2}+1)2^{\frac{n}{2}-1}-3}{4} & \text{if n is even} \\
\frac{(7(\frac{n-1}{2})+11)2^{\frac{n-1}{2}-1}-3}{4} & \text{if n is odd}
\end{cases} $
$\sum_{k=1}^{n} a_k = \begin{cases}
\frac{3(\frac{n}{2}+1)2^{\frac{n}{2}-1}-3}{4} & \text{if } n \text{ is even} \\
\frac{(7(\frac{n-1}{2})+11)2^{\frac{n-3}{2}}-3}{4} & \text{if } n \text{ is odd}
\end{cases} $
$\sum_{k=1}^n a_k = \begin{cases}
\frac{3(\frac{n}{2}+1)2^{\frac{n}{2}-1}-3}{4}, & n \text{ is even} \\
\frac{(7(\frac{n-1}{2})+11)2^{\frac{n-1}{2}-1}-3}{4} & n \text{ is odd}
\end{cases}$
$\sum_{k=1}^{n} a_k = \begin{cases}
\frac{3(\frac{n}{2}+1)2^{\frac{n}{2}-1}-3}{4} & \text{if } n \text{ is even} \\
\frac{1}{4}((7(\frac{n-1}{2})+11)2^{\frac{n-1}{2}-1}-3) & \text{if } n \text{ is odd}
\end{cases}$
∑k=1nak=⎩⎨⎧43(2n+1)22n−1−38(7(n−1)+22)22n−3−6(n:even)(n:odd) ∑k=1nak=⎩⎨⎧43(2n+1)22n−1−38(7n+15)22n−3−6(n:even)(n:odd) ∑k=1nak=⎩⎨⎧43(2n+1)22n−1−38(7n+15)22n−3−6if n is evenif n is odd ```
a_{2n-1} = (n+1)2^{n-2}
a_{2n} = (n+1)2^{n-1}
\sum_{k=1}^n a_k = \begin{cases}
\frac{3(\frac{n}{2}+1)2^{\frac{n}{2}-1}-3}{4} & \text{if } n \text{ is even} \\
\frac{(7n+15)2^{\frac{n-3}{2}}-6}{8} & \text{if } n \text{ is odd}
\end{cases}
```