建物の真下から20m離れた地点で、建物の屋上を見上げたときの仰角が32度であった。目の高さが1.7mとして、建物の高さを求める。ただし、$\sin 32^\circ = 0.5299$, $\cos 32^\circ = 0.8480$, $\tan 32^\circ = 0.6249$とし、小数第2位を四捨五入する。

幾何学三角比仰角高さtan
2025/8/5

1. 問題の内容

建物の真下から20m離れた地点で、建物の屋上を見上げたときの仰角が32度であった。目の高さが1.7mとして、建物の高さを求める。ただし、sin32=0.5299\sin 32^\circ = 0.5299, cos32=0.8480\cos 32^\circ = 0.8480, tan32=0.6249\tan 32^\circ = 0.6249とし、小数第2位を四捨五入する。

2. 解き方の手順

建物の高さから目の高さを引いた部分をhhとする。建物の真下からの距離が20mなので、仰角のタンジェントを使ってhhを求めることができる。
tan32=h20\tan 32^\circ = \frac{h}{20}
h=20×tan32h = 20 \times \tan 32^\circ
h=20×0.6249=12.498h = 20 \times 0.6249 = 12.498
小数第2位を四捨五入すると、
h12.50h \approx 12.50
建物の高さは、目の高さとhhを足したものである。
建物の高さ =h+1.7=12.50+1.7=14.2= h + 1.7 = 12.50 + 1.7 = 14.2

3. 最終的な答え

14.2 m

「幾何学」の関連問題

三角形ABCの外接円の半径Rを求める問題です。 (1) $a=3, A=150^\circ$ (2) $b=\sqrt{2}, B=120^\circ$ (3) $c=5, C=135^\circ$

三角形外接円正弦定理三角比
2025/8/5

ベクトル $a = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ とベクトル $b = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bma...

ベクトル外積単位ベクトル線形代数
2025/8/5

長さ2mの棒ABを観測地点Pから眺めている模式図が与えられている。点MはABの中点であり、PはABの垂直二等分線上にある。 (1) PM = 2mのとき、$\tan{\angle ABP}$ の値を求...

三角比直角三角形二等辺三角形tansin角度長さ図形
2025/8/5

直線 $2x - y - 1 = 0$ を $l$ とするとき、2点 $A(0, 4)$ と $B(a, b)$ が直線 $l$ に関して対称である。このとき、$a$ と $b$ の値を求める。

直線対称座標連立方程式
2025/8/5

長さ2mの棒ABを観測地点Pから眺めている模式図が与えられている。MはABの中点であり、PはABの垂直二等分線上にある。PM = 2m のとき、$\tan{\angle ABP}$ の値を求めよ。

三角比tan直角三角形相似
2025/8/5

長さ2mの棒ABを観測地点Pから眺めている。MはABの中点であり、PはABの垂直二等分線上にある。 (1) PM = 2mのとき、tan∠ABPの値を求める。選択肢はア: 1/2、イ: √2/2、ウ:...

三角比直角三角形角度tansinピタゴラスの定理
2025/8/5

三角形ABCの内心をIとする。 (1) 図に示された角$x$の大きさを求める。 (2) 直線BIと辺ACの交点をEとする。AB=8, BC=7, AC=4であるとき、BI:IEを求める。

三角形内心角の二等分線角度
2025/8/5

2つの直線 $y=x$ と $y = -\frac{1}{\sqrt{3}}x$ のなす鋭角を求めよ。

角度直線傾き三角関数
2025/8/5

$\triangle ABC$ において、点A, B, Cの位置ベクトルがそれぞれ$\vec{a}, \vec{b}, \vec{c}$で与えられている。辺ABの中点をMとするとき、線分CMを2:1に...

ベクトル位置ベクトル内分点三角形
2025/8/5

(2) 点P(4, 1)と直線 $3x + 2y - 1 = 0$ の距離を求める。 (3) 中心が(-3, 4), 半径2の円の方程式を求める。

距離点と直線の距離円の方程式
2025/8/5