図1の二等辺三角形(合同なものが4つ)を組み合わせて図2, 図3の図形を作った。図2の二等辺三角形の周の長さは48cm、図3の平行四辺形の周の長さは42cmである。図1の(ア)と(イ)の長さをそれぞれ求める。

幾何学図形二等辺三角形平行四辺形周の長さ連立方程式
2025/8/5

1. 問題の内容

図1の二等辺三角形(合同なものが4つ)を組み合わせて図2, 図3の図形を作った。図2の二等辺三角形の周の長さは48cm、図3の平行四辺形の周の長さは42cmである。図1の(ア)と(イ)の長さをそれぞれ求める。

2. 解き方の手順

まず、図1の二等辺三角形の辺の長さを文字で表す。
図1において、等しい辺(斜辺)の長さをxx cm、残りの辺(底辺)の長さをyy cmとする。
次に、図2と図3の周の長さをそれぞれxxyyを用いた式で表す。
図2の二等辺三角形の周の長さは、2x+y2x + yなので、
2x+y=482x + y = 48
図3の平行四辺形の周の長さは、4x4xなので、
4x=424x = 42
次に、連立方程式を解く。
4x=424x = 42 より、
x=424=212=10.5x = \frac{42}{4} = \frac{21}{2} = 10.5
2x+y=482x + y = 48x=10.5x = 10.5 を代入すると、
2×10.5+y=482 \times 10.5 + y = 48
21+y=4821 + y = 48
y=4821=27y = 48 - 21 = 27
したがって、x=10.5x = 10.5 cm, y=27y = 27 cmとなる。
(ア)はxxの長さなので、10.5 cm。
(イ)はyyの長さなので、27 cm。

3. 最終的な答え

(ア) 10.5 cm
(イ) 27 cm

「幾何学」の関連問題

中心 $(0,0,1)$、半径1の球面 $S$ 上の点 $Q$ (ただし $Q \neq (0,0,2)$ )と点 $P(1,0,2)$ を通る直線と平面 $z=0$ との交点を $R$ とする。点 ...

球面直線平面軌跡図示
2025/8/5

三角形ABCにおいて、以下の条件で指定された値を求めます。 (1) $A = 60^\circ, b = 5, c = 3$ のとき、$a$ を求める。 (2) $a = 2, b = \sqrt{6...

三角形余弦定理正弦定理三角比
2025/8/5

## 1. 問題の内容

三角比正弦定理余弦定理三角形
2025/8/5

正三角形$\triangle ABC$の辺$AB$上に点$D$がある。線分$BD$を1辺とする正三角形$\triangle BDE$を$\triangle ABC$の外側に作る。点$C$と点$D$、点...

合同正三角形証明
2025/8/5

120m離れた2地点A, Bと、島の地点Cがある。$\angle CAB = 75^\circ$, $\angle CBA = 45^\circ$であるとき、C, A間の距離を求める。

三角比正弦定理三角形距離
2025/8/5

三角形ABCにおいて、外接円の半径をRとする。以下の条件の時、指定されたものを求めよ。 (1) $b=4$, $B=30^\circ$, $C=105^\circ$ のとき、$a$ と $R$ (2)...

三角形正弦定理外接円角度辺の長さ
2025/8/5

領域 $D = \{(x, y) | 1 \le x^2 + y^2 \le 4\}$ を極座標変換したとき、極座標平面上の領域 $D_0$ として正しいものを選択肢から選ぶ問題です。

極座標変換面積
2025/8/5

原点をOとする。点Pはx軸の正の方向に1秒間に4、点Qはy軸の正の方向に1秒間に3の割合で進んでいる。ある時刻に、点Pは(1, 0)、点Qは(0, -3)にあった。PQ間の距離が最小となるのは、この時...

距離座標最小値二次関数
2025/8/5

四面体 OABC において、辺ABを1:2に内分する点をD、線分CDを3:5に内分する点をE、線分OEを1:3に内分する点をF、直線AFが平面OBCと交わる点をGとする。 (1) $\overrigh...

ベクトル空間ベクトル内分点四面体
2025/8/5

領域 $D = \{(x, y) \mid 1 \le x^2 + y^2 \le 4, y \ge x\}$ を極座標変換したときの領域 $D_0$ として正しいものを選択肢から選ぶ問題です。

極座標変換領域不等式積分
2025/8/5