次の定積分を計算してください。 $\int_{1}^{2} (\frac{3}{10}x^2 - \frac{2}{10}x + \frac{3}{10}) dx$

解析学定積分積分
2025/4/6

1. 問題の内容

次の定積分を計算してください。
12(310x2210x+310)dx\int_{1}^{2} (\frac{3}{10}x^2 - \frac{2}{10}x + \frac{3}{10}) dx

2. 解き方の手順

まず、不定積分を計算します。
(310x2210x+310)dx=310x2dx210xdx+310dx\int (\frac{3}{10}x^2 - \frac{2}{10}x + \frac{3}{10}) dx = \frac{3}{10} \int x^2 dx - \frac{2}{10} \int x dx + \frac{3}{10} \int dx
x2dx=x33+C1\int x^2 dx = \frac{x^3}{3} + C_1
xdx=x22+C2\int x dx = \frac{x^2}{2} + C_2
dx=x+C3\int dx = x + C_3
よって、不定積分は
310x33210x22+310x+C=x310x210+310x+C\frac{3}{10} \cdot \frac{x^3}{3} - \frac{2}{10} \cdot \frac{x^2}{2} + \frac{3}{10} x + C = \frac{x^3}{10} - \frac{x^2}{10} + \frac{3}{10} x + C
次に、定積分を計算します。
12(310x2210x+310)dx=[x310x210+310x]12\int_{1}^{2} (\frac{3}{10}x^2 - \frac{2}{10}x + \frac{3}{10}) dx = [\frac{x^3}{10} - \frac{x^2}{10} + \frac{3}{10} x]_{1}^{2}
=(23102210+3102)(13101210+3101)= (\frac{2^3}{10} - \frac{2^2}{10} + \frac{3}{10} \cdot 2) - (\frac{1^3}{10} - \frac{1^2}{10} + \frac{3}{10} \cdot 1)
=(810410+610)(110110+310)= (\frac{8}{10} - \frac{4}{10} + \frac{6}{10}) - (\frac{1}{10} - \frac{1}{10} + \frac{3}{10})
=1010310=710= \frac{10}{10} - \frac{3}{10} = \frac{7}{10}

3. 最終的な答え

710\frac{7}{10}

「解析学」の関連問題

与えられた数列の極限を求めます。 $$\lim_{n \to \infty} \frac{(2n+1)^n}{(n+1)^n}$$

極限数列指数関数計算
2025/4/13

次の極限を計算します。 $\lim_{n \to \infty} \frac{n}{\sqrt{n^2+1} - \sqrt{n}}$

極限数列有理化
2025/4/13

与えられた極限を計算します。問題は、 $\lim_{n \to \infty} \frac{1}{\sqrt{n+2} - \sqrt{n-2}}$ を求めることです。

極限関数の極限有理化
2025/4/13

問題は $\frac{d}{dt} (1 - \frac{d}{dt} (\sin t - \cos t))$ を計算することです。

微分三角関数
2025/4/13

方程式 $x = \cos x$ が、区間 $0 < x < \frac{\pi}{2}$ の範囲に少なくとも1つの実数解をもつことを示す問題です。$f(x) = x - \cos x$ とおき、$f...

中間値の定理方程式実数解三角関数
2025/4/13

与えられた極限 $\lim_{n \to \infty} \frac{n^2 + 3n - 4}{2n + 1}$ を計算します。

極限数列の極限発散
2025/4/13

$n$ が無限大に近づくときの関数 $6n^2 - 7n^3$ の極限を求めます。 つまり、 $\lim_{n \to \infty} (6n^2 - 7n^3)$ を計算します。

極限関数の極限無限大
2025/4/13

与えられた数列 $3n^2 - 4n + 2$ の、$n$ が無限大に近づくときの極限を求める問題です。つまり、 $\lim_{n\to\infty} (3n^2 - 4n + 2)$ を計算します。

極限数列多項式
2025/4/13

関数 $f(x)$ が与えられており、$x=2$ で連続となるように定数 $a$ の値を定める問題です。関数 $f(x)$ は次のように定義されています。 $ f(x) = \begin{cases}...

関数の連続性極限関数
2025/4/13

関数 $y = x \sin(\frac{1}{x})$ の $x=0$ における連続性を調べる。

連続性極限関数三角関数はさみうちの原理
2025/4/13