三角形ABCに内接する円Oがあり、その接点をD, E, Fとする。BD=5, CE=11, CD=7のとき、AFの長さを求める問題。

幾何学三角形接線幾何
2025/8/6

1. 問題の内容

三角形ABCに内接する円Oがあり、その接点をD, E, Fとする。BD=5, CE=11, CD=7のとき、AFの長さを求める問題。

2. 解き方の手順

円外の一点から円に引いた2本の接線の長さは等しいという性質を利用します。
* BD = BF = 5
* CE = AE = 11
* CD = CF = 7
AF = x とおくと、AB = BF + AF = 5 + x, AC = AE + CE = 11 + 7 = 18。
したがって、AF = x と CF = 7 より BC = CD + DB = 7+5 = 12。
図から、CE = AE = 11 なのでAC = AE + EC = 11 + 7=
1
8.
AB = AF + FB = x + 5
BC = BD + DC = 5 + 7 = 12
AC = CE + EA = 11 +7= 18
問題文より、CE =
1

1. ここで、AE=CEなので、AE=11。

よってAF=xとおくと、
AF=AE=11なので、答えは11である。

3. 最終的な答え

AF = 11

「幾何学」の関連問題

問題5: 半径 $r$ cm、高さ $h$ cmの円柱Aと、半径がAの3倍、高さがAの$\frac{1}{3}$の円柱Bがある。 (1) 円柱Bの体積を、$r$、$h$を使った式で表す。 (2) 円柱...

円柱体積計算連続整数倍数
2025/8/8

半径6cmの球の体積と表面積、および半径3cmの半球の体積と表面積をそれぞれ求める。

体積表面積半球
2025/8/8

$xy$平面上の4点 $(-2, 1)$, $(-1, -1)$, $(1, 2)$, $(-2, -2)$ と直線 $y = mx$ の距離をそれぞれ $a, b, c, d$ とおく。このとき、$...

点と直線の距離二次方程式判別式最大値最小値
2025/8/8

画像にある円錐(6)と円錐(7)の体積を求める問題です。

円錐体積ピタゴラスの定理三平方の定理
2025/8/8

三角形ABCにおいて、$AB=8$, $AC=5$, $\angle A = 120^\circ$とする。角Aの二等分線と辺BCの交点をDとするとき、線分ADの長さを求める。

三角形四角形余弦定理面積角の二等分線円に内接する四角形
2025/8/8

三角形ABCにおいて、AB=8, AC=5, ∠A=120°である。∠Aの二等分線と辺BCの交点をDとするとき、線分ADの長さを求めよ。

三角形角の二等分線面積三角比
2025/8/8

与えられた条件から四角形ABCDの面積Sを求める問題です。 (1) 平行四辺形ABCDにおいて、対角線の交点をOとするとき、$AC=10$, $BD=6\sqrt{2}$, $\angle AOD =...

面積四角形平行四辺形台形三角比余弦定理
2025/8/8

(1) 平行四辺形ABCDの面積Sを求めます。ただし、対角線の交点をOとし、$AC = 10$, $BD = 6\sqrt{2}$, $\angle AOD = 135^\circ$ です。 (2) ...

平行四辺形台形面積三角関数余弦定理
2025/8/8

問題は以下の2つです。 問1: $AB = 4$, $BC = 5$, $CA = 6$ である $\triangle ABC$ において、$\cos{\angle BAC}$ の値を求め、選択肢の中...

三角形余弦定理面積三角比
2025/8/8

図の五角形において、角度 $x$ の大きさを求める問題です。与えられている角度は65°, 110°, 100°, 108°です。

多角形内角外角五角形角度計算
2025/8/8