右の図において、$\angle ABC = \angle DAC$, $AD = 2$cm, $AC = 6$cm, $CD = 5$cmであるとき、線分$AB$の長さを求める問題です。

幾何学相似三角形長さ
2025/8/6

1. 問題の内容

右の図において、ABC=DAC\angle ABC = \angle DAC, AD=2AD = 2cm, AC=6AC = 6cm, CD=5CD = 5cmであるとき、線分ABABの長さを求める問題です。

2. 解き方の手順

ABC=DAC\angle ABC = \angle DACであり、C\angle Cは共通の角であるから、ABCDAC\triangle ABC \sim \triangle DACです。
相似な三角形の対応する辺の比は等しいので、
AC:DC=BC:AC=AB:DAAC:DC = BC:AC = AB:DA
が成り立ちます。
AC=6AC=6, DC=5DC=5, AD=2AD=2なので、
6:5=BC:6=AB:26:5 = BC:6 = AB:2
となります。
6:5=AB:26:5 = AB:2より、
5×AB=6×25 \times AB = 6 \times 2
5×AB=125 \times AB = 12
AB=125=2.4AB = \frac{12}{5} = 2.4

3. 最終的な答え

線分ABABの長さは125\frac{12}{5}cm、つまり2.4cmです。

「幾何学」の関連問題

円と直線が図のように配置されているとき、$z$ の値を求める問題です。ただし、$z$ は線分 $AB$ の長さに対応し、$AD$ の長さは $3$ と与えられています。円の接線と割線の定理を利用して、...

接線割線接線と割線の定理二次方程式解の公式図形
2025/8/6

3つの立体の体積と表面積を求める問題です。 (1)は三角柱と直方体を組み合わせた立体、(2)は直方体、(3)は円柱です。円周率は $\pi$ とします。

体積表面積三角柱直方体円柱
2025/8/6

長さ2mの棒ABを観測地点Pから眺めている状況を模式図で表している。MはABの中点であり、PはABの垂直二等分線上にある。このとき、以下の3つの問いに答える。 (1) PM = 2mのとき、tan∠A...

三角比直角三角形幾何tansinピタゴラスの定理
2025/8/6

高さ150mのタワーTHを、観測地点Pから眺めているときの模式図が与えられている。以下の3つの問いに答える。 (1) PH=260mのとき、見上げる角度$\theta$に最も近いものを選択肢から選ぶ。...

三角比角度高さ距離tancos
2025/8/6

$\triangle ABC$ において、$BC = 4$, $A = 45^\circ$, $B = 30^\circ$ のとき、$CA$ の値を求める。

三角形正弦定理余弦定理三角比面積
2025/8/6

三角比に関する問題。直角三角形の辺の長さから三角比の値を求めたり、三角比の値から角度を求めたり、三角比の値から他の三角比の値を求める問題。

三角比直角三角形sincostan三平方の定理三角関数の相互関係
2025/8/6

(1) 図の三角形において、与えられた角度 $105^\circ$ と $42^\circ$ から、角度 $x$ を求める。 (2) 平行四辺形ABCDにおいて、$AB=4$ cm, $BC=7$ c...

三角形角度平行四辺形面積相似二等辺三角形
2025/8/6

問題は2つのパートに分かれています。 (1) 図1において、AB = 12cm, CはABの中点であるとき、影をつけた部分の面積と周の長さを求めます。 (2) 図2において、ABを直径とする半円の弧上...

面積周の長さ扇形角度
2025/8/6

太郎さんと花子さんが、三角形ABDに余弦定理を適用して得られた二次方程式を解き、ADの長さを求めようとしている。問題は、BDと∠BADの値を代入して得られる二次方程式の解の一つが$\frac{クケ}{...

余弦定理二次方程式三角形線分の長さ図形問題
2025/8/6

三角形ABDにおいて、BD:DC=7:8であることからBDの長さを求め、余弦定理を利用してADの長さを求める。AD=xとおき、xについての二次方程式を解くことでADの長さが2つ求まる。そのうちの1つは...

三角形余弦定理二次方程式線分の長さ
2025/8/6