与えられた三角形の面積を求める問題です。底辺の長さが12、左側の辺の長さが9、左下の角が60°である三角形があります。また、左側の辺から底辺に垂線が引かれています。

幾何学三角形面積三角比sin直角三角形
2025/8/6

1. 問題の内容

与えられた三角形の面積を求める問題です。底辺の長さが12、左側の辺の長さが9、左下の角が60°である三角形があります。また、左側の辺から底辺に垂線が引かれています。

2. 解き方の手順

まず、左側の辺から底辺に引かれた垂線の長さを求めます。これは、与えられた60°の角を持つ直角三角形における高さに相当します。
左側の辺の長さは9なので、高さは 9×sin(60)9 \times \sin(60^\circ) で計算できます。
sin(60)=32\sin(60^\circ) = \frac{\sqrt{3}}{2} なので、高さは 9×32=9329 \times \frac{\sqrt{3}}{2} = \frac{9\sqrt{3}}{2} となります。
次に、三角形の面積を計算します。三角形の面積は、底辺×高さ÷2で求められます。
底辺は12、高さは 932\frac{9\sqrt{3}}{2} なので、面積は 12×932÷212 \times \frac{9\sqrt{3}}{2} \div 2 となります。
計算すると、 12×932×12=3×93=27312 \times \frac{9\sqrt{3}}{2} \times \frac{1}{2} = 3 \times 9\sqrt{3} = 27\sqrt{3} となります。

3. 最終的な答え

27327\sqrt{3}

「幾何学」の関連問題

円と直線が図のように配置されているとき、$z$ の値を求める問題です。ただし、$z$ は線分 $AB$ の長さに対応し、$AD$ の長さは $3$ と与えられています。円の接線と割線の定理を利用して、...

接線割線接線と割線の定理二次方程式解の公式図形
2025/8/6

3つの立体の体積と表面積を求める問題です。 (1)は三角柱と直方体を組み合わせた立体、(2)は直方体、(3)は円柱です。円周率は $\pi$ とします。

体積表面積三角柱直方体円柱
2025/8/6

長さ2mの棒ABを観測地点Pから眺めている状況を模式図で表している。MはABの中点であり、PはABの垂直二等分線上にある。このとき、以下の3つの問いに答える。 (1) PM = 2mのとき、tan∠A...

三角比直角三角形幾何tansinピタゴラスの定理
2025/8/6

高さ150mのタワーTHを、観測地点Pから眺めているときの模式図が与えられている。以下の3つの問いに答える。 (1) PH=260mのとき、見上げる角度$\theta$に最も近いものを選択肢から選ぶ。...

三角比角度高さ距離tancos
2025/8/6

$\triangle ABC$ において、$BC = 4$, $A = 45^\circ$, $B = 30^\circ$ のとき、$CA$ の値を求める。

三角形正弦定理余弦定理三角比面積
2025/8/6

三角比に関する問題。直角三角形の辺の長さから三角比の値を求めたり、三角比の値から角度を求めたり、三角比の値から他の三角比の値を求める問題。

三角比直角三角形sincostan三平方の定理三角関数の相互関係
2025/8/6

(1) 図の三角形において、与えられた角度 $105^\circ$ と $42^\circ$ から、角度 $x$ を求める。 (2) 平行四辺形ABCDにおいて、$AB=4$ cm, $BC=7$ c...

三角形角度平行四辺形面積相似二等辺三角形
2025/8/6

問題は2つのパートに分かれています。 (1) 図1において、AB = 12cm, CはABの中点であるとき、影をつけた部分の面積と周の長さを求めます。 (2) 図2において、ABを直径とする半円の弧上...

面積周の長さ扇形角度
2025/8/6

太郎さんと花子さんが、三角形ABDに余弦定理を適用して得られた二次方程式を解き、ADの長さを求めようとしている。問題は、BDと∠BADの値を代入して得られる二次方程式の解の一つが$\frac{クケ}{...

余弦定理二次方程式三角形線分の長さ図形問題
2025/8/6

三角形ABDにおいて、BD:DC=7:8であることからBDの長さを求め、余弦定理を利用してADの長さを求める。AD=xとおき、xについての二次方程式を解くことでADの長さが2つ求まる。そのうちの1つは...

三角形余弦定理二次方程式線分の長さ
2025/8/6