次の方程式を解く問題です。 (1) $x - 4 = 3$ (2) $5x = 9x + 24$

代数学一次方程式移項方程式の解法
2025/8/7

1. 問題の内容

次の方程式を解く問題です。
(1) x4=3x - 4 = 3
(2) 5x=9x+245x = 9x + 24

2. 解き方の手順

(1) x4=3x - 4 = 3 の場合
左辺の 4-4 を右辺に移項します。
x=3+4x = 3 + 4
x=7x = 7
(2) 5x=9x+245x = 9x + 24 の場合
右辺の 9x9x を左辺に移項します。
5x9x=245x - 9x = 24
4x=24-4x = 24
両辺を xx の係数である 4-4 で割ります。
x=244x = \frac{24}{-4}
x=6x = -6

3. 最終的な答え

(1) x=7x = 7
(2) x=6x = -6

「代数学」の関連問題

バラとガーベラの値段を求める問題です。 バラ4本とガーベラ5本を買うと920円、バラ3本とガーベラ7本を買うと950円になるという情報から、バラ1本とガーベラ1本の値段をそれぞれ求めます。

連立方程式文章問題方程式
2025/8/7

1個180円のりんごと1個85円のオレンジを合わせて10個買ったところ、代金の合計が1420円になった。買ったリンゴの個数を$x$個、オレンジの個数を$y$個として、以下の問いに答える。 (1) 個数...

連立方程式文章題方程式数量関係
2025/8/7

与えられた2次方程式を $(x+m)^2 = n$ の形に変形し、解を求める。具体的には、以下の3つの問題について解く。 (3) $x^2 - 12x + 8 = 0$ (5) $x^2 + 3x +...

二次方程式平方完成解の公式
2025/8/7

実数 $k$ を用いて表される直線 $L: y = kx + 1 - k - k^2$ について、以下の問いに答える。 (1) 直線 $L$ が点 $(2, 1)$ を通るような $k$ の値を求める...

直線二次関数判別式不等式放物線
2025/8/7

数列 $\{a_n\}$ の初項から第 $n$ 項までの和を $S_n$ とするとき、以下の条件が与えられています。 (i) $S_1 = 1$ (ii) $S_{n+1} - 3S_n = n+1$...

数列漸化式一般項
2025/8/7

1個180円のりんごと1個85円のオレンジを合わせて10個買ったところ、代金の合計が1420円になった。買ったリンゴの個数を$x$個、オレンジの個数を$y$個として、以下の問いに答えよ。 (1) 個数...

連立方程式文章問題数量関係
2025/8/7

与えられた条件を満たす2次関数の式を求める問題です。 条件は以下の通りです。 * 頂点が点 $(2, 5)$ * 点 $(3, 3)$ を通る

二次関数頂点方程式展開
2025/8/7

与えられた漸化式 $S_{n+1} - 3S_n = n+1$ と初期条件 $S_1 = 1$ から数列 $\{S_n\}$ の一般項を求めます。

漸化式数列一般項
2025/8/7

ある公園の入園料金について、通常料金と優待料金があり、大人と子供でそれぞれ料金が異なる。ある日の入園者は大人と子供合わせて158人であり、入園料金の合計は36000円であった。入園者のうち、大人26人...

連立方程式文章問題代数
2025/8/7

与えられた二次方程式を $(x+m)^2 = n$ の形に変形して解きます。今回は、(1) $x^2+4x-6=0$ と (4) $x^2+6x=8$ の2つの問題を解きます。

二次方程式平方完成方程式
2025/8/7