与えられた漸化式 $S_{n+1} - 3S_n = n+1$ と初期条件 $S_1 = 1$ から数列 $\{S_n\}$ の一般項を求めます。代数学漸化式数列一般項2025/8/71. 問題の内容与えられた漸化式 Sn+1−3Sn=n+1S_{n+1} - 3S_n = n+1Sn+1−3Sn=n+1 と初期条件 S1=1S_1 = 1S1=1 から数列 {Sn}\{S_n\}{Sn} の一般項を求めます。2. 解き方の手順まず、漸化式 Sn+1−3Sn=n+1S_{n+1} - 3S_n = n+1Sn+1−3Sn=n+1 を変形します。両辺を 3n+13^{n+1}3n+1 で割ると、Sn+13n+1−Sn3n=n+13n+1\frac{S_{n+1}}{3^{n+1}} - \frac{S_n}{3^n} = \frac{n+1}{3^{n+1}}3n+1Sn+1−3nSn=3n+1n+1ここで、Tn=Sn3nT_n = \frac{S_n}{3^n}Tn=3nSn とおくと、Tn+1−Tn=n+13n+1T_{n+1} - T_n = \frac{n+1}{3^{n+1}}Tn+1−Tn=3n+1n+1n≥1n \ge 1n≥1 に対して、この式を n=1n = 1n=1 から n=k−1n = k-1n=k−1 まで足し合わせると、∑n=1k−1(Tn+1−Tn)=∑n=1k−1n+13n+1\sum_{n=1}^{k-1} (T_{n+1} - T_n) = \sum_{n=1}^{k-1} \frac{n+1}{3^{n+1}}∑n=1k−1(Tn+1−Tn)=∑n=1k−13n+1n+1左辺は telescoping sum となり、Tk−T1T_k - T_1Tk−T1 となります。よって、Tk−T1=∑n=1k−1n+13n+1T_k - T_1 = \sum_{n=1}^{k-1} \frac{n+1}{3^{n+1}}Tk−T1=∑n=1k−13n+1n+1Tk=T1+∑n=1k−1n+13n+1T_k = T_1 + \sum_{n=1}^{k-1} \frac{n+1}{3^{n+1}}Tk=T1+∑n=1k−13n+1n+1T1=S131=13T_1 = \frac{S_1}{3^1} = \frac{1}{3}T1=31S1=31 より、Tk=13+∑n=1k−1n+13n+1T_k = \frac{1}{3} + \sum_{n=1}^{k-1} \frac{n+1}{3^{n+1}}Tk=31+∑n=1k−13n+1n+1Sk=3kTkS_k = 3^k T_kSk=3kTk であるから、Sk=3k(13+∑n=1k−1n+13n+1)S_k = 3^k \left( \frac{1}{3} + \sum_{n=1}^{k-1} \frac{n+1}{3^{n+1}} \right)Sk=3k(31+∑n=1k−13n+1n+1)ここで、S=∑n=1k−1n+13n+1S = \sum_{n=1}^{k-1} \frac{n+1}{3^{n+1}}S=∑n=1k−13n+1n+1 を計算します。S=232+333+434+⋯+k3kS = \frac{2}{3^2} + \frac{3}{3^3} + \frac{4}{3^4} + \cdots + \frac{k}{3^k}S=322+333+344+⋯+3kk13S=233+334+435+⋯+k3k+1\frac{1}{3}S = \frac{2}{3^3} + \frac{3}{3^4} + \frac{4}{3^5} + \cdots + \frac{k}{3^{k+1}}31S=332+343+354+⋯+3k+1k上の式から下の式を引くと、23S=232+133+134+⋯+13k−k3k+1\frac{2}{3}S = \frac{2}{3^2} + \frac{1}{3^3} + \frac{1}{3^4} + \cdots + \frac{1}{3^k} - \frac{k}{3^{k+1}}32S=322+331+341+⋯+3k1−3k+1k23S=29+127(1−13k−2)1−13−k3k+1\frac{2}{3}S = \frac{2}{9} + \frac{\frac{1}{27}(1 - \frac{1}{3^{k-2}})}{1-\frac{1}{3}} - \frac{k}{3^{k+1}}32S=92+1−31271(1−3k−21)−3k+1k23S=29+127(1−13k−2)23−k3k+1\frac{2}{3}S = \frac{2}{9} + \frac{\frac{1}{27}(1 - \frac{1}{3^{k-2}})}{\frac{2}{3}} - \frac{k}{3^{k+1}}32S=92+32271(1−3k−21)−3k+1k23S=29+118(1−13k−2)−k3k+1\frac{2}{3}S = \frac{2}{9} + \frac{1}{18}(1 - \frac{1}{3^{k-2}}) - \frac{k}{3^{k+1}}32S=92+181(1−3k−21)−3k+1kS=39+112(1−13k−2)−k2⋅3kS = \frac{3}{9} + \frac{1}{12}(1 - \frac{1}{3^{k-2}}) - \frac{k}{2 \cdot 3^{k}}S=93+121(1−3k−21)−2⋅3kkS=13+112−112⋅3k−2−k2⋅3kS = \frac{1}{3} + \frac{1}{12} - \frac{1}{12 \cdot 3^{k-2}} - \frac{k}{2 \cdot 3^k}S=31+121−12⋅3k−21−2⋅3kkS=512−3212⋅3k−k2⋅3kS = \frac{5}{12} - \frac{3^2}{12 \cdot 3^{k}} - \frac{k}{2 \cdot 3^k}S=125−12⋅3k32−2⋅3kkS=512−3+6k12⋅3kS = \frac{5}{12} - \frac{3 + 6k}{12 \cdot 3^k}S=125−12⋅3k3+6kSk=3k(13+512−3+6k12⋅3k)S_k = 3^k \left( \frac{1}{3} + \frac{5}{12} - \frac{3+6k}{12 \cdot 3^k} \right)Sk=3k(31+125−12⋅3k3+6k)Sk=3k3+5123k−3+6k12S_k = \frac{3^k}{3} + \frac{5}{12} 3^k - \frac{3+6k}{12}Sk=33k+1253k−123+6kSk=4⋅3k+5⋅3k12−3+6k12S_k = \frac{4 \cdot 3^k + 5 \cdot 3^k}{12} - \frac{3+6k}{12}Sk=124⋅3k+5⋅3k−123+6kSk=9⋅3k−3−6k12S_k = \frac{9 \cdot 3^k - 3 - 6k}{12}Sk=129⋅3k−3−6kSk=3⋅3k−1−2k4S_k = \frac{3 \cdot 3^k - 1 - 2k}{4}Sk=43⋅3k−1−2kSk=3k+1−2k−14S_k = \frac{3^{k+1} - 2k - 1}{4}Sk=43k+1−2k−13. 最終的な答えSn=3n+1−2n−14S_n = \frac{3^{n+1} - 2n - 1}{4}Sn=43n+1−2n−1