関数 $f(t)$ が与えられています。$f(t) = t^2 + \frac{t^2}{(t-1)^2}$ を簡略化します。代数学関数の簡略化分数式代数式2025/8/81. 問題の内容関数 f(t)f(t)f(t) が与えられています。f(t)=t2+t2(t−1)2f(t) = t^2 + \frac{t^2}{(t-1)^2}f(t)=t2+(t−1)2t2 を簡略化します。2. 解き方の手順まず、f(t)f(t)f(t) の式を整理します。f(t)=t2+t2(t−1)2f(t) = t^2 + \frac{t^2}{(t-1)^2}f(t)=t2+(t−1)2t2f(t)=t2+t2t2−2t+1f(t) = t^2 + \frac{t^2}{t^2 - 2t + 1}f(t)=t2+t2−2t+1t2ここで、tt−1=t−1+1t−1=1+1t−1\frac{t}{t-1} = \frac{t-1+1}{t-1} = 1 + \frac{1}{t-1}t−1t=t−1t−1+1=1+t−11を利用します。よって、t2(t−1)2=(tt−1)2=(1+1t−1)2=1+2t−1+1(t−1)2\frac{t^2}{(t-1)^2} = \left(\frac{t}{t-1}\right)^2 = \left(1 + \frac{1}{t-1}\right)^2 = 1 + \frac{2}{t-1} + \frac{1}{(t-1)^2}(t−1)2t2=(t−1t)2=(1+t−11)2=1+t−12+(t−1)21f(t)=t2+1+2t−1+1(t−1)2f(t) = t^2 + 1 + \frac{2}{t-1} + \frac{1}{(t-1)^2}f(t)=t2+1+t−12+(t−1)21f(t)=t2+1+2(t−1)+1(t−1)2=t2+1+2t−2+1(t−1)2=t2+1+2t−1(t−1)2f(t) = t^2 + 1 + \frac{2(t-1) + 1}{(t-1)^2} = t^2 + 1 + \frac{2t - 2 + 1}{(t-1)^2} = t^2 + 1 + \frac{2t-1}{(t-1)^2}f(t)=t2+1+(t−1)22(t−1)+1=t2+1+(t−1)22t−2+1=t2+1+(t−1)22t−1または、f(t)=t2+t2(t−1)2=t2(t−1)2+t2(t−1)2f(t) = t^2 + \frac{t^2}{(t-1)^2} = \frac{t^2(t-1)^2 + t^2}{(t-1)^2}f(t)=t2+(t−1)2t2=(t−1)2t2(t−1)2+t2=t2(t2−2t+1)+t2(t−1)2=t4−2t3+t2+t2(t−1)2=t4−2t3+2t2(t−1)2= \frac{t^2(t^2-2t+1) + t^2}{(t-1)^2} = \frac{t^4-2t^3+t^2+t^2}{(t-1)^2} = \frac{t^4-2t^3+2t^2}{(t-1)^2}=(t−1)2t2(t2−2t+1)+t2=(t−1)2t4−2t3+t2+t2=(t−1)2t4−2t3+2t2=t4−2t3+2t2t2−2t+1= \frac{t^4-2t^3+2t^2}{t^2-2t+1}=t2−2t+1t4−2t3+2t2多項式除算を実行すると、t4−2t3+2t2=(t2−2t+1)(t2)+t2t^4-2t^3+2t^2 = (t^2-2t+1)(t^2) + t^2t4−2t3+2t2=(t2−2t+1)(t2)+t2したがって、t4−2t3+2t2t2−2t+1=t2+t2t2−2t+1\frac{t^4-2t^3+2t^2}{t^2-2t+1} = t^2 + \frac{t^2}{t^2-2t+1}t2−2t+1t4−2t3+2t2=t2+t2−2t+1t2=t2+(tt−1)2=t2+(t−1+1t−1)2 = t^2 + \left(\frac{t}{t-1}\right)^2 = t^2 + \left(\frac{t-1+1}{t-1}\right)^2=t2+(t−1t)2=t2+(t−1t−1+1)2=t2+(1+1t−1)2=t2+1+2t−1+1(t−1)2= t^2 + \left(1 + \frac{1}{t-1}\right)^2 = t^2 + 1 + \frac{2}{t-1} + \frac{1}{(t-1)^2}=t2+(1+t−11)2=t2+1+t−12+(t−1)21=t2+1+2(t−1)+1(t−1)2=t2+1+2t−1(t−1)2= t^2 + 1 + \frac{2(t-1) + 1}{(t-1)^2} = t^2 + 1 + \frac{2t-1}{(t-1)^2}=t2+1+(t−1)22(t−1)+1=t2+1+(t−1)22t−13. 最終的な答えf(t)=t2+1+2t−1+1(t−1)2f(t) = t^2 + 1 + \frac{2}{t-1} + \frac{1}{(t-1)^2}f(t)=t2+1+t−12+(t−1)21 または f(t)=t2+1+2t−1(t−1)2f(t) = t^2 + 1 + \frac{2t-1}{(t-1)^2}f(t)=t2+1+(t−1)22t−1f(t)=t4−2t3+2t2t2−2t+1f(t) = \frac{t^4-2t^3+2t^2}{t^2-2t+1}f(t)=t2−2t+1t4−2t3+2t2最も簡単な形式は f(t)=t2+(1+1t−1)2f(t) = t^2 + \left(1 + \frac{1}{t-1}\right)^2f(t)=t2+(1+t−11)2 です。