与えられた2点 $(-1, -11)$ と $(2, 1)$ を通る直線の傾きを求めます。幾何学直線傾き座標2025/8/81. 問題の内容与えられた2点 (−1,−11)(-1, -11)(−1,−11) と (2,1)(2, 1)(2,1) を通る直線の傾きを求めます。2. 解き方の手順2点 (x1,y1)(x_1, y_1)(x1,y1) と (x2,y2)(x_2, y_2)(x2,y2) を通る直線の傾き mmm は、以下の式で計算できます。m=y2−y1x2−x1m = \frac{y_2 - y_1}{x_2 - x_1}m=x2−x1y2−y1この問題では、(x1,y1)=(−1,−11)(x_1, y_1) = (-1, -11)(x1,y1)=(−1,−11)、(x2,y2)=(2,1)(x_2, y_2) = (2, 1)(x2,y2)=(2,1) です。それぞれの値を代入して傾きを計算します。m=1−(−11)2−(−1)=1+112+1=123=4m = \frac{1 - (-11)}{2 - (-1)} = \frac{1 + 11}{2 + 1} = \frac{12}{3} = 4m=2−(−1)1−(−11)=2+11+11=312=43. 最終的な答え傾きは 4 です。