問題は、次の2つの数列の和を求めることです。 (1) $\sum_{k=1}^{n} (2k+3)$ (2) $\sum_{k=1}^{n} (2k^2 - 3k + 1)$代数学数列シグマ公式級数2025/8/81. 問題の内容問題は、次の2つの数列の和を求めることです。(1) ∑k=1n(2k+3)\sum_{k=1}^{n} (2k+3)∑k=1n(2k+3)(2) ∑k=1n(2k2−3k+1)\sum_{k=1}^{n} (2k^2 - 3k + 1)∑k=1n(2k2−3k+1)2. 解き方の手順(1) ∑k=1n(2k+3)\sum_{k=1}^{n} (2k+3)∑k=1n(2k+3) を計算します。∑k=1n(2k+3)=2∑k=1nk+∑k=1n3\sum_{k=1}^{n} (2k+3) = 2 \sum_{k=1}^{n} k + \sum_{k=1}^{n} 3∑k=1n(2k+3)=2∑k=1nk+∑k=1n3∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n3=3n\sum_{k=1}^{n} 3 = 3n∑k=1n3=3nよって、∑k=1n(2k+3)=2⋅n(n+1)2+3n=n(n+1)+3n=n2+n+3n=n2+4n=n(n+4)\sum_{k=1}^{n} (2k+3) = 2 \cdot \frac{n(n+1)}{2} + 3n = n(n+1) + 3n = n^2 + n + 3n = n^2 + 4n = n(n+4)∑k=1n(2k+3)=2⋅2n(n+1)+3n=n(n+1)+3n=n2+n+3n=n2+4n=n(n+4)(2) ∑k=1n(2k2−3k+1)\sum_{k=1}^{n} (2k^2 - 3k + 1)∑k=1n(2k2−3k+1) を計算します。∑k=1n(2k2−3k+1)=2∑k=1nk2−3∑k=1nk+∑k=1n1\sum_{k=1}^{n} (2k^2 - 3k + 1) = 2 \sum_{k=1}^{n} k^2 - 3 \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1∑k=1n(2k2−3k+1)=2∑k=1nk2−3∑k=1nk+∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nよって、∑k=1n(2k2−3k+1)=2⋅n(n+1)(2n+1)6−3⋅n(n+1)2+n\sum_{k=1}^{n} (2k^2 - 3k + 1) = 2 \cdot \frac{n(n+1)(2n+1)}{6} - 3 \cdot \frac{n(n+1)}{2} + n∑k=1n(2k2−3k+1)=2⋅6n(n+1)(2n+1)−3⋅2n(n+1)+n=n(n+1)(2n+1)3−3n(n+1)2+n= \frac{n(n+1)(2n+1)}{3} - \frac{3n(n+1)}{2} + n=3n(n+1)(2n+1)−23n(n+1)+n=2n(n+1)(2n+1)−9n(n+1)+6n6= \frac{2n(n+1)(2n+1) - 9n(n+1) + 6n}{6}=62n(n+1)(2n+1)−9n(n+1)+6n=n[2(n+1)(2n+1)−9(n+1)+6]6= \frac{n[2(n+1)(2n+1) - 9(n+1) + 6]}{6}=6n[2(n+1)(2n+1)−9(n+1)+6]=n[2(2n2+3n+1)−9n−9+6]6= \frac{n[2(2n^2+3n+1) - 9n - 9 + 6]}{6}=6n[2(2n2+3n+1)−9n−9+6]=n[4n2+6n+2−9n−3]6= \frac{n[4n^2 + 6n + 2 - 9n - 3]}{6}=6n[4n2+6n+2−9n−3]=n(4n2−3n−1)6= \frac{n(4n^2 - 3n - 1)}{6}=6n(4n2−3n−1)=n(4n+1)(n−1)6= \frac{n(4n+1)(n-1)}{6}=6n(4n+1)(n−1)3. 最終的な答え(1) n(n+4)n(n+4)n(n+4)(2) n(4n+1)(n−1)6\frac{n(4n+1)(n-1)}{6}6n(4n+1)(n−1)