$\sum_{k=1}^{n} (2k^2 - 3k + 1)$ を計算せよ。代数学シグマ数列公式計算2025/8/81. 問題の内容∑k=1n(2k2−3k+1)\sum_{k=1}^{n} (2k^2 - 3k + 1)∑k=1n(2k2−3k+1) を計算せよ。2. 解き方の手順まず、シグマの性質を利用して、それぞれの項を分解します。∑k=1n(2k2−3k+1)=2∑k=1nk2−3∑k=1nk+∑k=1n1\sum_{k=1}^{n} (2k^2 - 3k + 1) = 2\sum_{k=1}^{n} k^2 - 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1∑k=1n(2k2−3k+1)=2∑k=1nk2−3∑k=1nk+∑k=1n1次に、∑k=1nk2\sum_{k=1}^{n} k^2∑k=1nk2, ∑k=1nk\sum_{k=1}^{n} k∑k=1nk, ∑k=1n1\sum_{k=1}^{n} 1∑k=1n1 の公式を適用します。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nこれらの公式を代入すると、2∑k=1nk2−3∑k=1nk+∑k=1n1=2⋅n(n+1)(2n+1)6−3⋅n(n+1)2+n2\sum_{k=1}^{n} k^2 - 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 2 \cdot \frac{n(n+1)(2n+1)}{6} - 3 \cdot \frac{n(n+1)}{2} + n2∑k=1nk2−3∑k=1nk+∑k=1n1=2⋅6n(n+1)(2n+1)−3⋅2n(n+1)+n=n(n+1)(2n+1)3−3n(n+1)2+n= \frac{n(n+1)(2n+1)}{3} - \frac{3n(n+1)}{2} + n=3n(n+1)(2n+1)−23n(n+1)+n=2n(n+1)(2n+1)−9n(n+1)+6n6= \frac{2n(n+1)(2n+1) - 9n(n+1) + 6n}{6}=62n(n+1)(2n+1)−9n(n+1)+6n=n(2(n+1)(2n+1)−9(n+1)+6)6= \frac{n(2(n+1)(2n+1) - 9(n+1) + 6)}{6}=6n(2(n+1)(2n+1)−9(n+1)+6)=n(2(2n2+3n+1)−9n−9+6)6= \frac{n(2(2n^2+3n+1) - 9n - 9 + 6)}{6}=6n(2(2n2+3n+1)−9n−9+6)=n(4n2+6n+2−9n−3)6= \frac{n(4n^2+6n+2 - 9n - 3)}{6}=6n(4n2+6n+2−9n−3)=n(4n2−3n−1)6= \frac{n(4n^2 - 3n - 1)}{6}=6n(4n2−3n−1)=n(4n+1)(n−1)6= \frac{n(4n+1)(n-1)}{6}=6n(4n+1)(n−1)3. 最終的な答えn(4n+1)(n−1)6\frac{n(4n+1)(n-1)}{6}6n(4n+1)(n−1)