$x+y = p$, $xy = q$とし、$S_n = x^n + y^n$ $(n = 1, 2, \dots)$と定義する。 (1) $S_1$, $S_2$を$p, q$で表せ。 (2) $S_n$が漸化式$S_{n+2} - pS_{n+1} + qS_n = 0$ $(n = 1, 2, \dots)$を満たすことを示し、$S_3$, $S_4$, $S_5$を求めよ。

代数学漸化式対称式式の計算
2025/8/9

1. 問題の内容

x+y=px+y = p, xy=qxy = qとし、Sn=xn+ynS_n = x^n + y^n (n=1,2,)(n = 1, 2, \dots)と定義する。
(1) S1S_1, S2S_2p,qp, qで表せ。
(2) SnS_nが漸化式Sn+2pSn+1+qSn=0S_{n+2} - pS_{n+1} + qS_n = 0 (n=1,2,)(n = 1, 2, \dots)を満たすことを示し、S3S_3, S4S_4, S5S_5を求めよ。

2. 解き方の手順

(1)
S1=x+yS_1 = x + yなので、S1=pS_1 = p
S2=x2+y2S_2 = x^2 + y^2
(x+y)2=x2+2xy+y2(x+y)^2 = x^2 + 2xy + y^2
x2+y2=(x+y)22xyx^2 + y^2 = (x+y)^2 - 2xy
S2=p22qS_2 = p^2 - 2q
(2)
Sn+2=xn+2+yn+2S_{n+2} = x^{n+2} + y^{n+2}
Sn+1=xn+1+yn+1S_{n+1} = x^{n+1} + y^{n+1}
Sn=xn+ynS_n = x^n + y^n
pSn+1=(x+y)(xn+1+yn+1)=xn+2+xyn+1+yxn+1+yn+2=xn+2+yn+2+xy(xn+yn)=Sn+2+qSnpS_{n+1} = (x+y)(x^{n+1} + y^{n+1}) = x^{n+2} + xy^{n+1} + yx^{n+1} + y^{n+2} = x^{n+2} + y^{n+2} + xy(x^n + y^n) = S_{n+2} + qS_n
したがって、Sn+2pSn+1+qSn=Sn+2(Sn+2+qSn)+qSn=0S_{n+2} - pS_{n+1} + qS_n = S_{n+2} - (S_{n+2} + qS_n) + qS_n = 0
よって、Sn+2=pSn+1qSnS_{n+2} = pS_{n+1} - qS_n
S1=pS_1 = p
S2=p22qS_2 = p^2 - 2q
S3=pS2qS1=p(p22q)qp=p32pqpq=p33pqS_3 = pS_2 - qS_1 = p(p^2 - 2q) - qp = p^3 - 2pq - pq = p^3 - 3pq
S4=pS3qS2=p(p33pq)q(p22q)=p43p2qp2q+2q2=p44p2q+2q2S_4 = pS_3 - qS_2 = p(p^3 - 3pq) - q(p^2 - 2q) = p^4 - 3p^2q - p^2q + 2q^2 = p^4 - 4p^2q + 2q^2
S5=pS4qS3=p(p44p2q+2q2)q(p33pq)=p54p3q+2pq2p3q+3pq2=p55p3q+5pq2S_5 = pS_4 - qS_3 = p(p^4 - 4p^2q + 2q^2) - q(p^3 - 3pq) = p^5 - 4p^3q + 2pq^2 - p^3q + 3pq^2 = p^5 - 5p^3q + 5pq^2

3. 最終的な答え

(1) S1=pS_1 = p, S2=p22qS_2 = p^2 - 2q
(2) S3=p33pqS_3 = p^3 - 3pq, S4=p44p2q+2q2S_4 = p^4 - 4p^2q + 2q^2, S5=p55p3q+5pq2S_5 = p^5 - 5p^3q + 5pq^2