与えられた複数の二次方程式を解く問題です。

代数学二次方程式平方根解の公式因数分解
2025/8/10
はい、承知いたしました。問題文に記載されている二次方程式を解きます。

1. 問題の内容

与えられた複数の二次方程式を解く問題です。

2. 解き方の手順

(1) x2=28x^2 = 28
x=±28=±27x = \pm \sqrt{28} = \pm 2\sqrt{7}
(2) 9x281=09x^2 - 81 = 0
9x2=819x^2 = 81
x2=9x^2 = 9
x=±3x = \pm 3
(3) (x8)2=4(x-8)^2 = 4
x8=±2x-8 = \pm 2
x=8±2x = 8 \pm 2
x=6,10x = 6, 10
(4) x2+12x=3x^2 + 12x = 3
x2+12x3=0x^2 + 12x - 3 = 0
解の公式より、x=12±1224(1)(3)2=12±144+122=12±1562=12±2392=6±39x = \frac{-12 \pm \sqrt{12^2 - 4(1)(-3)}}{2} = \frac{-12 \pm \sqrt{144+12}}{2} = \frac{-12 \pm \sqrt{156}}{2} = \frac{-12 \pm 2\sqrt{39}}{2} = -6 \pm \sqrt{39}
(5) x27x+5=0x^2 - 7x + 5 = 0
解の公式より、x=7±(7)24(1)(5)2=7±49202=7±292x = \frac{7 \pm \sqrt{(-7)^2 - 4(1)(5)}}{2} = \frac{7 \pm \sqrt{49 - 20}}{2} = \frac{7 \pm \sqrt{29}}{2}
(6) 2x29x11=02x^2 - 9x - 11 = 0
(2x11)(x+1)=0(2x - 11)(x+1) = 0
x=112,1x = \frac{11}{2}, -1
(7) (x+3)(x4)=0(x+3)(x-4) = 0
x=3,4x = -3, 4
(8) x222x+40=0x^2 - 22x + 40 = 0
(x2)(x20)=0(x-2)(x-20) = 0
x=2,20x = 2, 20
(9) x2+16x+64=0x^2 + 16x + 64 = 0
(x+8)2=0(x+8)^2 = 0
x=8x = -8
(10) x230x=0x^2 - 30x = 0
x(x30)=0x(x-30) = 0
x=0,30x = 0, 30
(11) 4x236x88=04x^2 - 36x - 88 = 0
x29x22=0x^2 - 9x - 22 = 0
(x11)(x+2)=0(x-11)(x+2) = 0
x=11,2x = 11, -2
(12) (x+7)(x7)=32(x+7)(x-7) = -32
x249=32x^2 - 49 = -32
x2=17x^2 = 17
x=±17x = \pm \sqrt{17}
(13) (x2)27=2x26x(x-2)^2 - 7 = -2x^2 - 6x
x24x+47=2x26xx^2 - 4x + 4 - 7 = -2x^2 - 6x
3x2+2x3=03x^2 + 2x - 3 = 0
解の公式より、x=2±224(3)(3)2(3)=2±4+366=2±406=2±2106=1±103x = \frac{-2 \pm \sqrt{2^2 - 4(3)(-3)}}{2(3)} = \frac{-2 \pm \sqrt{4 + 36}}{6} = \frac{-2 \pm \sqrt{40}}{6} = \frac{-2 \pm 2\sqrt{10}}{6} = \frac{-1 \pm \sqrt{10}}{3}
(14) 3(x23x)=(x3)(x18)3(x^2 - 3x) = (x-3)(x-18)
3x29x=x221x+543x^2 - 9x = x^2 - 21x + 54
2x2+12x54=02x^2 + 12x - 54 = 0
x2+6x27=0x^2 + 6x - 27 = 0
(x+9)(x3)=0(x+9)(x-3) = 0
x=9,3x = -9, 3

3. 最終的な答え

(1) x=±27x = \pm 2\sqrt{7}
(2) x=±3x = \pm 3
(3) x=6,10x = 6, 10
(4) x=6±39x = -6 \pm \sqrt{39}
(5) x=7±292x = \frac{7 \pm \sqrt{29}}{2}
(6) x=112,1x = \frac{11}{2}, -1
(7) x=3,4x = -3, 4
(8) x=2,20x = 2, 20
(9) x=8x = -8
(10) x=0,30x = 0, 30
(11) x=11,2x = 11, -2
(12) x=±17x = \pm \sqrt{17}
(13) x=1±103x = \frac{-1 \pm \sqrt{10}}{3}
(14) x=9,3x = -9, 3