図のような道があり、角はすべて直角です。Aを出発してBまで、回り道をせずに最短の道のりで進むとき、道の選び方は全部で何通りあるかを求める問題です。

離散数学組み合わせ最短経路順列
2025/4/6

1. 問題の内容

図のような道があり、角はすべて直角です。Aを出発してBまで、回り道をせずに最短の道のりで進むとき、道の選び方は全部で何通りあるかを求める問題です。

2. 解き方の手順

AからBまで最短の道順で進むためには、右へ6回、上へ3回進む必要があります。
したがって、全部で9回の移動のうち、右へ進む6回をどこにするかを選べば、上へ進む3回も自動的に決まります。
これは、9個の場所から6個の場所を選ぶ組み合わせの数と同じです。
組み合わせの数は、以下のように計算できます。
9C6=9!6!3!=9×8×73×2×1=3×4×7=84_9C_6 = \frac{9!}{6!3!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 3 \times 4 \times 7 = 84
または、9回の移動のうち、上へ進む3回をどこにするかを選んでも同じ結果になります。
9C3=9!3!6!=9×8×73×2×1=3×4×7=84_9C_3 = \frac{9!}{3!6!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 3 \times 4 \times 7 = 84

3. 最終的な答え

84通り

「離散数学」の関連問題

与えられた集合の部分集合をすべて求める問題です。具体的には、(1) $\{5, 10\}$ と (2) $\{a, b, c, d\}$ の部分集合をそれぞれ求めます。今回は(2)の問題$\{a, b...

集合部分集合組み合わせ
2025/5/13

全体集合 $U = \{1, 2, 3, 4, 5, 6\}$、部分集合 $A = \{1, 2, 3\}$、 $B = \{3, 6\}$ が与えられたとき、次の集合を求める問題です。 (1) $\...

集合集合演算補集合共通部分和集合
2025/5/13

集合 $B = \{x | x \text{ は } 2x \leq 8 \text{ を満たす自然数}\}$ について、その部分集合をすべて書き出す問題です。

集合部分集合要素集合の列挙
2025/5/13

全体集合 $U$ を10以下の自然数全体の集合とし、部分集合 $A = \{2, 3, 6, 8, 9\}$、$B = \{1, 3, 5, 8\}$ が与えられたとき、以下の集合を要素を書き並べて表...

集合集合演算補集合共通部分和集合
2025/5/13

問題は集合 $A$ と $B$ の共通部分 $A \cap B$ の補集合、つまり $\overline{A \cap B}$ を求めることです。

集合集合演算補集合ド・モルガンの法則
2025/5/13

全体集合をUとし、U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}とする。 集合B = {2, 4, 6, 8, 9, 10}とする。 集合Aが与えられたとき、集合Aとして適切な...

集合集合演算補集合共通部分集合論
2025/5/13

全体集合Uとその部分集合A, Bについて、n(U) = 60, n(A) = 30, n(B) = 25である。このとき、次の集合の要素数の最大値と最小値を求めよ。 (1) $n(A \cap B)$...

集合集合の要素数最大値最小値
2025/5/13

与えられたブール代数の式を証明する問題です。以下の5つの式を証明します。 (1) $AB + \overline{B} = A + \overline{B}$ (2) $(A+B)(\overline...

ブール代数論理式論理演算証明
2025/5/13

問題は、集合$A$と$B$の和集合$A \cup B$の要素の個数$n(A \cup B)$を求める公式を完成させる問題です。 (1) 一般の場合 (2) $A \cap B = \emptyset$...

集合集合の要素数和集合共通部分
2025/5/12

9個の要素を持つ集合Aの部分集合の総数を求める。さらに、Aの2つの特定の要素を含むAの部分集合の総数を求める。

集合部分集合組み合わせ
2025/5/12