図のような道があり、角はすべて直角です。Aを出発してBまで、回り道をせずに最短の道のりで進むとき、道の選び方は全部で何通りあるかを求める問題です。

離散数学組み合わせ最短経路順列
2025/4/6

1. 問題の内容

図のような道があり、角はすべて直角です。Aを出発してBまで、回り道をせずに最短の道のりで進むとき、道の選び方は全部で何通りあるかを求める問題です。

2. 解き方の手順

AからBまで最短の道順で進むためには、右へ6回、上へ3回進む必要があります。
したがって、全部で9回の移動のうち、右へ進む6回をどこにするかを選べば、上へ進む3回も自動的に決まります。
これは、9個の場所から6個の場所を選ぶ組み合わせの数と同じです。
組み合わせの数は、以下のように計算できます。
9C6=9!6!3!=9×8×73×2×1=3×4×7=84_9C_6 = \frac{9!}{6!3!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 3 \times 4 \times 7 = 84
または、9回の移動のうち、上へ進む3回をどこにするかを選んでも同じ結果になります。
9C3=9!3!6!=9×8×73×2×1=3×4×7=84_9C_3 = \frac{9!}{3!6!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 3 \times 4 \times 7 = 84

3. 最終的な答え

84通り

「離散数学」の関連問題

A, B, C, Dの4県がこの順に並んでいます。A県からD県まで行く方法が何通りあるか求める問題です。ただし、交通手段には制限があります。 * A→B:手段なし * B→C:電車、バス、モノ...

組み合わせ場合の数経路探索
2025/7/18

問題4から7まで、順列組み合わせの問題です。 - 問題4: 大人3人と子供2人が並ぶ際の並び方の数を求める。 - 問題5: 3人が2つの部屋のいずれかに入る場合の数を求める。 - 問題6: 9人から3...

順列組み合わせ場合の数重複順列円順列組み合わせ
2025/7/18

全体集合 $U = \{x | 1 \le x \le 8, x \text{は整数}\}$、その部分集合 $A = \{x | x \text{は偶数}, x \in U\}, B = \{1, 2...

集合集合演算共通部分和集合補集合
2025/7/18

集合 $A = \{1, 3, 6, 12\}$ と集合 $B = \{1, 2, 3, 4, 6, 12\}$ が与えられています。$A$ と $B$ の間に成り立つ関係を選択肢から選びます。選択肢...

集合部分集合集合の包含関係
2025/7/18

全体集合 $U = \{x \mid 1 \le x \le 10, x \text{は整数}\}$ と、その部分集合 $A = \{1, 2, 3, 5, 7\}$ と $B = \{2, 3, 8...

集合集合演算補集合共通部分和集合
2025/7/18

## 1. 問題の内容

集合補集合共通部分和集合順列階乗場合の数
2025/7/18

(1) 4種類の文字a, b, c, dから重複を許して7個取る組み合わせの総数を求めます。 (2) $(a+b+c)^6$の展開式における異なる項の数を求めます。

組み合わせ重複組み合わせ二項定理
2025/7/18

5つの問題があります。 (1) 5個の文字 a, b, c, d, e から3個を選んで1列に並べる並べ方の総数を求める。 (2) 7人から5人を選んで1列に並べる並べ方の総数を求める。 (3) 4人...

順列組み合わせ場合の数
2025/7/17

7個の文字a, b, c, d, e, f, gを円形に並べるとき、aとbが隣り合う並べ方は何通りあるかを求める問題です。

順列円順列組み合わせ
2025/7/17

5個の文字a, b, c, d, eを1列に並べるとき、以下の並べ方は何通りあるかを求める問題です。 (1) aとbが両端にくる場合 (2) aとbが隣り合う場合

順列組み合わせ場合の数数え上げ
2025/7/17