与えられた10個の式を展開する問題です。代数学式の展開多項式代数2025/8/101. 問題の内容与えられた10個の式を展開する問題です。2. 解き方の手順各式の展開を行います。(1) (a+2b)(3a+b)(a+2b)(3a+b)(a+2b)(3a+b)=a(3a+b)+2b(3a+b)= a(3a+b) + 2b(3a+b)=a(3a+b)+2b(3a+b)=3a2+ab+6ab+2b2= 3a^2 + ab + 6ab + 2b^2=3a2+ab+6ab+2b2=3a2+7ab+2b2= 3a^2 + 7ab + 2b^2=3a2+7ab+2b2(2) (4x+3y)(2x+5y)(4x+3y)(2x+5y)(4x+3y)(2x+5y)=4x(2x+5y)+3y(2x+5y)= 4x(2x+5y) + 3y(2x+5y)=4x(2x+5y)+3y(2x+5y)=8x2+20xy+6xy+15y2= 8x^2 + 20xy + 6xy + 15y^2=8x2+20xy+6xy+15y2=8x2+26xy+15y2= 8x^2 + 26xy + 15y^2=8x2+26xy+15y2(3) (2a+3b)(a−4b)(2a+3b)(a-4b)(2a+3b)(a−4b)=2a(a−4b)+3b(a−4b)= 2a(a-4b) + 3b(a-4b)=2a(a−4b)+3b(a−4b)=2a2−8ab+3ab−12b2= 2a^2 - 8ab + 3ab - 12b^2=2a2−8ab+3ab−12b2=2a2−5ab−12b2= 2a^2 - 5ab - 12b^2=2a2−5ab−12b2(4) (3x+5y)(2x−3y)(3x+5y)(2x-3y)(3x+5y)(2x−3y)=3x(2x−3y)+5y(2x−3y)= 3x(2x-3y) + 5y(2x-3y)=3x(2x−3y)+5y(2x−3y)=6x2−9xy+10xy−15y2= 6x^2 - 9xy + 10xy - 15y^2=6x2−9xy+10xy−15y2=6x2+xy−15y2= 6x^2 + xy - 15y^2=6x2+xy−15y2(5) (3x−7y)(2x+7y)(3x-7y)(2x+7y)(3x−7y)(2x+7y)=3x(2x+7y)−7y(2x+7y)= 3x(2x+7y) - 7y(2x+7y)=3x(2x+7y)−7y(2x+7y)=6x2+21xy−14xy−49y2= 6x^2 + 21xy - 14xy - 49y^2=6x2+21xy−14xy−49y2=6x2+7xy−49y2= 6x^2 + 7xy - 49y^2=6x2+7xy−49y2(6) (2a−b)(6a+5b)(2a-b)(6a+5b)(2a−b)(6a+5b)=2a(6a+5b)−b(6a+5b)= 2a(6a+5b) - b(6a+5b)=2a(6a+5b)−b(6a+5b)=12a2+10ab−6ab−5b2= 12a^2 + 10ab - 6ab - 5b^2=12a2+10ab−6ab−5b2=12a2+4ab−5b2= 12a^2 + 4ab - 5b^2=12a2+4ab−5b2(7) (8x−3y)(5x−6y)(8x-3y)(5x-6y)(8x−3y)(5x−6y)=8x(5x−6y)−3y(5x−6y)= 8x(5x-6y) - 3y(5x-6y)=8x(5x−6y)−3y(5x−6y)=40x2−48xy−15xy+18y2= 40x^2 - 48xy - 15xy + 18y^2=40x2−48xy−15xy+18y2=40x2−63xy+18y2= 40x^2 - 63xy + 18y^2=40x2−63xy+18y2(8) (6a−b)(2a−9b)(6a-b)(2a-9b)(6a−b)(2a−9b)=6a(2a−9b)−b(2a−9b)= 6a(2a-9b) - b(2a-9b)=6a(2a−9b)−b(2a−9b)=12a2−54ab−2ab+9b2= 12a^2 - 54ab - 2ab + 9b^2=12a2−54ab−2ab+9b2=12a2−56ab+9b2= 12a^2 - 56ab + 9b^2=12a2−56ab+9b2(9) (ab+6c)(4ab−c)(ab+6c)(4ab-c)(ab+6c)(4ab−c)=ab(4ab−c)+6c(4ab−c)= ab(4ab-c) + 6c(4ab-c)=ab(4ab−c)+6c(4ab−c)=4a2b2−abc+24abc−6c2= 4a^2b^2 - abc + 24abc - 6c^2=4a2b2−abc+24abc−6c2=4a2b2+23abc−6c2= 4a^2b^2 + 23abc - 6c^2=4a2b2+23abc−6c2(10) (7x−8yz)(9x−4yz)(7x-8yz)(9x-4yz)(7x−8yz)(9x−4yz)=7x(9x−4yz)−8yz(9x−4yz)= 7x(9x-4yz) - 8yz(9x-4yz)=7x(9x−4yz)−8yz(9x−4yz)=63x2−28xyz−72xyz+32y2z2= 63x^2 - 28xyz - 72xyz + 32y^2z^2=63x2−28xyz−72xyz+32y2z2=63x2−100xyz+32y2z2= 63x^2 - 100xyz + 32y^2z^2=63x2−100xyz+32y2z23. 最終的な答え(1) 3a2+7ab+2b23a^2 + 7ab + 2b^23a2+7ab+2b2(2) 8x2+26xy+15y28x^2 + 26xy + 15y^28x2+26xy+15y2(3) 2a2−5ab−12b22a^2 - 5ab - 12b^22a2−5ab−12b2(4) 6x2+xy−15y26x^2 + xy - 15y^26x2+xy−15y2(5) 6x2+7xy−49y26x^2 + 7xy - 49y^26x2+7xy−49y2(6) 12a2+4ab−5b212a^2 + 4ab - 5b^212a2+4ab−5b2(7) 40x2−63xy+18y240x^2 - 63xy + 18y^240x2−63xy+18y2(8) 12a2−56ab+9b212a^2 - 56ab + 9b^212a2−56ab+9b2(9) 4a2b2+23abc−6c24a^2b^2 + 23abc - 6c^24a2b2+23abc−6c2(10) 63x2−100xyz+32y2z263x^2 - 100xyz + 32y^2z^263x2−100xyz+32y2z2