次の3つの和を求める問題です。 (1) $\sum_{k=1}^{n} (2k+1)$ (2) $\sum_{k=1}^{n} (3k-5)$ (3) $\sum_{k=1}^{4} \frac{1}{4k}$代数学数列シグマ級数2025/8/101. 問題の内容次の3つの和を求める問題です。(1) ∑k=1n(2k+1)\sum_{k=1}^{n} (2k+1)∑k=1n(2k+1)(2) ∑k=1n(3k−5)\sum_{k=1}^{n} (3k-5)∑k=1n(3k−5)(3) ∑k=1414k\sum_{k=1}^{4} \frac{1}{4k}∑k=144k12. 解き方の手順(1)∑k=1n(2k+1)\sum_{k=1}^{n} (2k+1)∑k=1n(2k+1) を計算します。∑k=1n(2k+1)=2∑k=1nk+∑k=1n1\sum_{k=1}^{n} (2k+1) = 2 \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1∑k=1n(2k+1)=2∑k=1nk+∑k=1n1∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nよって、2∑k=1nk+∑k=1n1=2⋅n(n+1)2+n=n(n+1)+n=n2+n+n=n2+2n=n(n+2)2 \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 2 \cdot \frac{n(n+1)}{2} + n = n(n+1) + n = n^2 + n + n = n^2 + 2n = n(n+2)2∑k=1nk+∑k=1n1=2⋅2n(n+1)+n=n(n+1)+n=n2+n+n=n2+2n=n(n+2)(2)∑k=1n(3k−5)\sum_{k=1}^{n} (3k-5)∑k=1n(3k−5) を計算します。∑k=1n(3k−5)=3∑k=1nk−5∑k=1n1\sum_{k=1}^{n} (3k-5) = 3 \sum_{k=1}^{n} k - 5 \sum_{k=1}^{n} 1∑k=1n(3k−5)=3∑k=1nk−5∑k=1n1∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nよって、3∑k=1nk−5∑k=1n1=3⋅n(n+1)2−5n=3n(n+1)2−5n=3n2+3n2−10n2=3n2−7n2=n(3n−7)23 \sum_{k=1}^{n} k - 5 \sum_{k=1}^{n} 1 = 3 \cdot \frac{n(n+1)}{2} - 5n = \frac{3n(n+1)}{2} - 5n = \frac{3n^2 + 3n}{2} - \frac{10n}{2} = \frac{3n^2 - 7n}{2} = \frac{n(3n-7)}{2}3∑k=1nk−5∑k=1n1=3⋅2n(n+1)−5n=23n(n+1)−5n=23n2+3n−210n=23n2−7n=2n(3n−7)(3)∑k=1414k\sum_{k=1}^{4} \frac{1}{4k}∑k=144k1 を計算します。∑k=1414k=14∑k=141k=14(11+12+13+14)=14(1+12+13+14)=14(1212+612+412+312)=14(2512)=2548\sum_{k=1}^{4} \frac{1}{4k} = \frac{1}{4} \sum_{k=1}^{4} \frac{1}{k} = \frac{1}{4} ( \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} ) = \frac{1}{4} ( 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} ) = \frac{1}{4} ( \frac{12}{12} + \frac{6}{12} + \frac{4}{12} + \frac{3}{12} ) = \frac{1}{4} ( \frac{25}{12} ) = \frac{25}{48}∑k=144k1=41∑k=14k1=41(11+21+31+41)=41(1+21+31+41)=41(1212+126+124+123)=41(1225)=48253. 最終的な答え(1) n(n+2)n(n+2)n(n+2)(2) n(3n−7)2\frac{n(3n-7)}{2}2n(3n−7)(3) 2548\frac{25}{48}4825