次の定積分を計算せよ。 $\int_{1}^{3} (3x^2 - 2x) dx + \int_{1}^{3} (2x - 3) dx$

解析学定積分積分計算
2025/4/6

1. 問題の内容

次の定積分を計算せよ。
13(3x22x)dx+13(2x3)dx\int_{1}^{3} (3x^2 - 2x) dx + \int_{1}^{3} (2x - 3) dx

2. 解き方の手順

まず、積分をまとめます。積分区間が同じなので、被積分関数を足し合わせることができます。
13(3x22x+2x3)dx=13(3x23)dx\int_{1}^{3} (3x^2 - 2x + 2x - 3) dx = \int_{1}^{3} (3x^2 - 3) dx
次に、不定積分を求めます。
(3x23)dx=x33x+C\int (3x^2 - 3) dx = x^3 - 3x + C
最後に、定積分の値を計算します。
13(3x23)dx=[x33x]13=(3333)(1331)=(279)(13)=18(2)=18+2=20\int_{1}^{3} (3x^2 - 3) dx = [x^3 - 3x]_{1}^{3} = (3^3 - 3 \cdot 3) - (1^3 - 3 \cdot 1) = (27 - 9) - (1 - 3) = 18 - (-2) = 18 + 2 = 20

3. 最終的な答え

20

「解析学」の関連問題

$\int (5\sin x - 4\cos x) dx$ を計算します。

不定積分三角関数指数関数対数関数置換積分部分積分
2025/7/23

問題は、関数 $\frac{1}{x}$ の不定積分を求めることです。

積分不定積分対数関数
2025/7/23

(1) $\sqrt{1-x}$ の2次の近似式を用いて、$\sqrt{0.9}$ と $\sqrt{24}$ の近似値を求める。 (2) $\sqrt[3]{1+x}$ の2次の近似式を用いて、$\...

近似テイラー展開平方根立方根
2025/7/23

与えられた微分方程式 $\frac{dx}{dt} = \sqrt{a - bx}$ を解きます。ここで、$a$ と $b$ は定数です。

微分方程式変数分離形積分置換積分
2025/7/23

以下の問題が与えられています。 (1) $\sqrt[n]{n!} = \exp\left(\frac{1}{n}\sum_{k=1}^{n} \log k\right)$ を示す。 (2) $n \...

極限数列対数積分Stirlingの公式
2025/7/23

問題は、極限 $\lim_{n \to \infty} \sqrt[n]{n!}$ を求めるものです。 (1) $\sqrt[n]{n!} = \exp(\frac{1}{n} \sum_{k=1}^...

極限数列対数Stirlingの公式
2025/7/23

$k$ を正の定数とするとき、以下の双曲線関数の導関数を求めよ。 (1) $\sinh kx$ (2) $\cosh kx$ (3) $\tanh kx$

双曲線関数導関数微分
2025/7/23

$k$ を正の定数とする。以下の3つの関数について、それぞれの導関数を求める問題です。 (1) $\sinh kx$ (2) $\cosh kx$ (3) $\tanh kx$

導関数双曲線関数微分合成関数の微分tanhcoshsinh
2025/7/23

次の関数の導関数を求めます。 (1) $y = \frac{x}{\log x}$ (2) $y = \tan^{-1} \frac{x}{\sqrt{1+x^2}}$ (3) $y = \log(1...

導関数微分合成関数商の微分公式逆三角関数双曲線関数
2025/7/23

微分方程式 $\frac{dx}{dt} = \frac{1}{\sqrt{a - bt^2}}$ を解いて、$x$ を $t$ の関数として求める問題です。ここで、$a$ と $b$ は定数です。

微分方程式積分変数変換
2025/7/23