$x = \frac{2}{\sqrt{8} + \sqrt{2}}$、 $y = \frac{\sqrt{8} + \sqrt{2}}{9}$ のとき、$x - 3y$ の値を求めよ。代数学式の計算有理化平方根2025/8/121. 問題の内容x=28+2x = \frac{2}{\sqrt{8} + \sqrt{2}}x=8+22、 y=8+29y = \frac{\sqrt{8} + \sqrt{2}}{9}y=98+2 のとき、x−3yx - 3yx−3y の値を求めよ。2. 解き方の手順まず、xxx を簡略化します。8=4×2=22\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}8=4×2=22 なので、x=222+2=232x = \frac{2}{2\sqrt{2} + \sqrt{2}} = \frac{2}{3\sqrt{2}}x=22+22=322次に、分母を有理化します。x=232×22=223×2=23x = \frac{2}{3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{2}}{3 \times 2} = \frac{\sqrt{2}}{3}x=322×22=3×222=32次に、yyy を簡略化します。8=22\sqrt{8} = 2\sqrt{2}8=22 なので、y=22+29=329=23y = \frac{2\sqrt{2} + \sqrt{2}}{9} = \frac{3\sqrt{2}}{9} = \frac{\sqrt{2}}{3}y=922+2=932=32最後に、x−3yx - 3yx−3y を計算します。x−3y=23−3×23=23−2=23−323=2−323=−223x - 3y = \frac{\sqrt{2}}{3} - 3 \times \frac{\sqrt{2}}{3} = \frac{\sqrt{2}}{3} - \sqrt{2} = \frac{\sqrt{2}}{3} - \frac{3\sqrt{2}}{3} = \frac{\sqrt{2} - 3\sqrt{2}}{3} = \frac{-2\sqrt{2}}{3}x−3y=32−3×32=32−2=32−332=32−32=3−223. 最終的な答え−223-\frac{2\sqrt{2}}{3}−322