与えられた二次方程式を解きます。代数学二次方程式平方根解の公式因数分解2025/8/121. 問題の内容与えられた二次方程式を解きます。2. 解き方の手順(3) 8x2=28x^2 = 28x2=2x2=28=14x^2 = \frac{2}{8} = \frac{1}{4}x2=82=41x=±14x = \pm \sqrt{\frac{1}{4}}x=±41x=±12x = \pm \frac{1}{2}x=±21(4) 3x2−12=03x^2 - 12 = 03x2−12=03x2=123x^2 = 123x2=12x2=123=4x^2 = \frac{12}{3} = 4x2=312=4x=±4x = \pm \sqrt{4}x=±4x=±2x = \pm 2x=±2(5) 4x2−9=04x^2 - 9 = 04x2−9=04x2=94x^2 = 94x2=9x2=94x^2 = \frac{9}{4}x2=49x=±94x = \pm \sqrt{\frac{9}{4}}x=±49x=±32x = \pm \frac{3}{2}x=±23(6) 5x2−60=05x^2 - 60 = 05x2−60=05x2=605x^2 = 605x2=60x2=605=12x^2 = \frac{60}{5} = 12x2=560=12x=±12x = \pm \sqrt{12}x=±12x=±23x = \pm 2\sqrt{3}x=±23(7) (x−4)2=24(x - 4)^2 = 24(x−4)2=24x−4=±24x - 4 = \pm \sqrt{24}x−4=±24x−4=±26x - 4 = \pm 2\sqrt{6}x−4=±26x=4±26x = 4 \pm 2\sqrt{6}x=4±26(8) (x+1)2=2(x + 1)^2 = 2(x+1)2=2x+1=±2x + 1 = \pm \sqrt{2}x+1=±2x=−1±2x = -1 \pm \sqrt{2}x=−1±2(9) (x−1)2−8=0(x - 1)^2 - 8 = 0(x−1)2−8=0(x−1)2=8(x - 1)^2 = 8(x−1)2=8x−1=±8x - 1 = \pm \sqrt{8}x−1=±8x−1=±22x - 1 = \pm 2\sqrt{2}x−1=±22x=1±22x = 1 \pm 2\sqrt{2}x=1±22(10) (x+4)2−10=8(x + 4)^2 - 10 = 8(x+4)2−10=8(x+4)2=18(x + 4)^2 = 18(x+4)2=18x+4=±18x + 4 = \pm \sqrt{18}x+4=±18x+4=±32x + 4 = \pm 3\sqrt{2}x+4=±32x=−4±32x = -4 \pm 3\sqrt{2}x=−4±32(11) (x−5)2−4=5(x - 5)^2 - 4 = 5(x−5)2−4=5(x−5)2=9(x - 5)^2 = 9(x−5)2=9x−5=±9x - 5 = \pm \sqrt{9}x−5=±9x−5=±3x - 5 = \pm 3x−5=±3x=5±3x = 5 \pm 3x=5±3x=8,2x = 8, 2x=8,2(12) (x+2)2−36=0(x + 2)^2 - 36 = 0(x+2)2−36=0(x+2)2=36(x + 2)^2 = 36(x+2)2=36x+2=±36x + 2 = \pm \sqrt{36}x+2=±36x+2=±6x + 2 = \pm 6x+2=±6x=−2±6x = -2 \pm 6x=−2±6x=4,−8x = 4, -8x=4,−8(13) x2+4x−1=0x^2 + 4x - 1 = 0x2+4x−1=0解の公式: x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4acx=−4±42−4(1)(−1)2(1)x = \frac{-4 \pm \sqrt{4^2 - 4(1)(-1)}}{2(1)}x=2(1)−4±42−4(1)(−1)x=−4±16+42x = \frac{-4 \pm \sqrt{16 + 4}}{2}x=2−4±16+4x=−4±202x = \frac{-4 \pm \sqrt{20}}{2}x=2−4±20x=−4±252x = \frac{-4 \pm 2\sqrt{5}}{2}x=2−4±25x=−2±5x = -2 \pm \sqrt{5}x=−2±5(14) 4x2+3x−2=04x^2 + 3x - 2 = 04x2+3x−2=0解の公式: x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4acx=−3±32−4(4)(−2)2(4)x = \frac{-3 \pm \sqrt{3^2 - 4(4)(-2)}}{2(4)}x=2(4)−3±32−4(4)(−2)x=−3±9+328x = \frac{-3 \pm \sqrt{9 + 32}}{8}x=8−3±9+32x=−3±418x = \frac{-3 \pm \sqrt{41}}{8}x=8−3±41(15) x2+11x−1=0x^2 + 11x - 1 = 0x2+11x−1=0解の公式: x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4acx=−11±112−4(1)(−1)2(1)x = \frac{-11 \pm \sqrt{11^2 - 4(1)(-1)}}{2(1)}x=2(1)−11±112−4(1)(−1)x=−11±121+42x = \frac{-11 \pm \sqrt{121 + 4}}{2}x=2−11±121+4x=−11±1252x = \frac{-11 \pm \sqrt{125}}{2}x=2−11±125x=−11±552x = \frac{-11 \pm 5\sqrt{5}}{2}x=2−11±55(16) 2x2+3x+1=02x^2 + 3x + 1 = 02x2+3x+1=0因数分解: (2x+1)(x+1)=0(2x+1)(x+1) = 0(2x+1)(x+1)=02x+1=02x + 1 = 02x+1=0 or x+1=0x + 1 = 0x+1=02x=−12x = -12x=−1 or x=−1x = -1x=−1x=−12x = -\frac{1}{2}x=−21 or x=−1x = -1x=−13. 最終的な答え(3) x=±12x = \pm \frac{1}{2}x=±21(4) x=±2x = \pm 2x=±2(5) x=±32x = \pm \frac{3}{2}x=±23(6) x=±23x = \pm 2\sqrt{3}x=±23(7) x=4±26x = 4 \pm 2\sqrt{6}x=4±26(8) x=−1±2x = -1 \pm \sqrt{2}x=−1±2(9) x=1±22x = 1 \pm 2\sqrt{2}x=1±22(10) x=−4±32x = -4 \pm 3\sqrt{2}x=−4±32(11) x=8,2x = 8, 2x=8,2(12) x=4,−8x = 4, -8x=4,−8(13) x=−2±5x = -2 \pm \sqrt{5}x=−2±5(14) x=−3±418x = \frac{-3 \pm \sqrt{41}}{8}x=8−3±41(15) x=−11±552x = \frac{-11 \pm 5\sqrt{5}}{2}x=2−11±55(16) x=−12,−1x = -\frac{1}{2}, -1x=−21,−1