長さ $l$ [m] の棒の両端 A, B に、逆向き平行で大きさ $F$ [N] の2力が作用している。このとき、2つの力の合力を求めよ。

応用数学力学ベクトル合力偶力モーメント
2025/3/11

1. 問題の内容

長さ ll [m] の棒の両端 A, B に、逆向き平行で大きさ FF [N] の2力が作用している。このとき、2つの力の合力を求めよ。

2. 解き方の手順

この問題は、偶力に関する問題です。偶力とは、大きさが等しく、向きが反対で、同一作用線上にはない2つの力の組み合わせのことです。偶力の合力は0になりますが、物体には回転モーメントが働きます。
合力は、それぞれの力をベクトルとして足し合わせることで求められます。
この場合、Aに作用する力を FA\vec{F_A}、Bに作用する力を FB\vec{F_B} とすると、FA=FB\vec{F_A} = -\vec{F_B} であり、それぞれの力の大きさは FF [N] です。
したがって、合力 F\vec{F_{合}} は、
F=FA+FB=FAFA=0\vec{F_{合}} = \vec{F_A} + \vec{F_B} = \vec{F_A} - \vec{F_A} = \vec{0}
合力の大きさは、0 N となります。

3. 最終的な答え

0

「応用数学」の関連問題

音の強さ $I = 10^{-6}$ のときの音の強さのレベルを、式 $\text{(音の強さのレベル)} = 10 \log_{10} \frac{I}{I_0}$ を用いて計算します。ただし、$I...

対数指数物理
2025/5/31

制約条件 $x^2 + y^2 - 1 = 0$ の下で、関数 $f(x, y) = xy$ の最大値と最小値を求めます。

最適化ラグランジュの未定乗数法最大値最小値多変数関数
2025/5/31

制約条件 $x^2 + y^2 - 1 = 0$ の下で、$f(x,y) = xy$ の最大値と最小値を求める問題です。

最大値最小値ラグランジュの未定乗数法多変数関数制約条件
2025/5/31

温度 $T$ の環境下で、物質量 $n$ の理想気体が取手付きピストンのある容器に封入されている。容器の上部は真空である。気体は容器を通して外界と自由に熱をやり取りできる。ピストンの質量は無視できるほ...

熱力学理想気体等温過程断熱過程仕事
2025/5/31

断熱壁で囲まれた容器1と容器2があり、それぞれ理想気体が封入されています。容器1は容積が変化せず、初期温度が $T_1$ です。容器2はピストン付きで、初期温度が $T_2 (<T_1)$ 、圧力が ...

熱力学理想気体熱平衡内部エネルギー
2025/5/31

白熱電球の発熱体が黒体であると仮定して、以下の問いに答えます。 (i) ある白熱電球から放射される光の最も強度の高い波長が $1.07 \ \mu m$ であったとき、ウィーンの変位則を用いて発熱体の...

熱力学黒体放射ウィーンの変位則ステファン・ボルツマンの法則積分
2025/5/31

白熱電球を黒体と仮定して、以下の3つの問いに答えます。 (i) 最も強度が高い波長が与えられたとき、ウィーンの変位則を用いて発熱体の温度 $T$ を求めます。 (ii) 発熱体が単位時間・単位面積あた...

熱力学黒体放射ウィーンの変位則ステファン=ボルツマンの法則
2025/5/31

この問題は、白熱電球の発熱体を黒体と仮定し、ウィーンの変位則を用いて発熱体の温度を求め、単位時間・単位面積当たりに放出するエネルギーを求め、さらに表面積が与えられた場合に放出されるエネルギーを計算する...

熱力学物理ウィーンの変位則黒体放射エネルギー計算
2025/5/31

断面積 $A$ のピストン付き容器に $n$ モルの理想気体が封入されている。容器の上部は真空である。 (i) ピストンの上に質量 $m$ のおもりAを置いたとき、気体の体積が $V_1$ となった。...

熱力学理想気体等温過程断熱過程仕事熱量
2025/5/31

関数 $f(x, y) = x + y$ の、条件 $g(x, y) = (\frac{x}{2})^2 + y^2 - 1 = 0$ の下での最大値と最小値を、ラグランジュの未定乗数法を用いて求めま...

ラグランジュの未定乗数法最大値最小値多変数関数
2025/5/31