$\sum_{k=1}^{n} \frac{1}{k(k+2)}$ を計算せよ。解析学級数部分分数分解シグマ記号数列の和2025/8/131. 問題の内容∑k=1n1k(k+2)\sum_{k=1}^{n} \frac{1}{k(k+2)}∑k=1nk(k+2)1 を計算せよ。2. 解き方の手順与えられた和を計算するために、部分分数分解を利用する。1k(k+2)\frac{1}{k(k+2)}k(k+2)1 を部分分数に分解する。1k(k+2)=Ak+Bk+2\frac{1}{k(k+2)} = \frac{A}{k} + \frac{B}{k+2}k(k+2)1=kA+k+2B とおく。両辺に k(k+2)k(k+2)k(k+2) をかけると、1=A(k+2)+Bk1 = A(k+2) + Bk1=A(k+2)+Bk1=(A+B)k+2A1 = (A+B)k + 2A1=(A+B)k+2Aこの式が任意の kkk に対して成り立つためには、A+B=0A+B=0A+B=0 かつ 2A=12A=12A=1したがって、A=12A = \frac{1}{2}A=21 であり、B=−A=−12B = -A = -\frac{1}{2}B=−A=−21 である。よって、1k(k+2)=12(1k−1k+2)\frac{1}{k(k+2)} = \frac{1}{2} \left(\frac{1}{k} - \frac{1}{k+2}\right)k(k+2)1=21(k1−k+21)したがって、∑k=1n1k(k+2)=∑k=1n12(1k−1k+2)=12∑k=1n(1k−1k+2)\sum_{k=1}^{n} \frac{1}{k(k+2)} = \sum_{k=1}^{n} \frac{1}{2} \left(\frac{1}{k} - \frac{1}{k+2}\right) = \frac{1}{2} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+2}\right)∑k=1nk(k+2)1=∑k=1n21(k1−k+21)=21∑k=1n(k1−k+21)=12[(1−13)+(12−14)+(13−15)+(14−16)+⋯+(1n−1−1n+1)+(1n−1n+2)]= \frac{1}{2} \left[ \left(1 - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{4} - \frac{1}{6}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n+1}\right) + \left(\frac{1}{n} - \frac{1}{n+2}\right) \right]=21[(1−31)+(21−41)+(31−51)+(41−61)+⋯+(n−11−n+11)+(n1−n+21)]=12(1+12−1n+1−1n+2)= \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}\right)=21(1+21−n+11−n+21)=12(32−1n+1−1n+2)= \frac{1}{2} \left(\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2}\right)=21(23−n+11−n+21)=12(32−n+2+n+1(n+1)(n+2))= \frac{1}{2} \left(\frac{3}{2} - \frac{n+2+n+1}{(n+1)(n+2)}\right)=21(23−(n+1)(n+2)n+2+n+1)=12(32−2n+3(n+1)(n+2))= \frac{1}{2} \left(\frac{3}{2} - \frac{2n+3}{(n+1)(n+2)}\right)=21(23−(n+1)(n+2)2n+3)=12(3(n+1)(n+2)−2(2n+3)2(n+1)(n+2))= \frac{1}{2} \left(\frac{3(n+1)(n+2)-2(2n+3)}{2(n+1)(n+2)}\right)=21(2(n+1)(n+2)3(n+1)(n+2)−2(2n+3))=14(3(n2+3n+2)−4n−6(n+1)(n+2))= \frac{1}{4} \left(\frac{3(n^2+3n+2) - 4n - 6}{(n+1)(n+2)}\right)=41((n+1)(n+2)3(n2+3n+2)−4n−6)=14(3n2+9n+6−4n−6(n+1)(n+2))= \frac{1}{4} \left(\frac{3n^2 + 9n + 6 - 4n - 6}{(n+1)(n+2)}\right)=41((n+1)(n+2)3n2+9n+6−4n−6)=14(3n2+5n(n+1)(n+2))= \frac{1}{4} \left(\frac{3n^2 + 5n}{(n+1)(n+2)}\right)=41((n+1)(n+2)3n2+5n)=n(3n+5)4(n+1)(n+2)= \frac{n(3n+5)}{4(n+1)(n+2)}=4(n+1)(n+2)n(3n+5)3. 最終的な答えn(3n+5)4(n+1)(n+2)\frac{n(3n+5)}{4(n+1)(n+2)}4(n+1)(n+2)n(3n+5)