与えられた式 $(\frac{\sqrt{3}+1}{\sqrt{3}-1})^2 + (\frac{\sqrt{3}-1}{\sqrt{3}+1})^2$ を計算して簡略化する問題です。

代数学式の計算有理化平方根
2025/8/13

1. 問題の内容

与えられた式 (3+131)2+(313+1)2(\frac{\sqrt{3}+1}{\sqrt{3}-1})^2 + (\frac{\sqrt{3}-1}{\sqrt{3}+1})^2 を計算して簡略化する問題です。

2. 解き方の手順

まず、それぞれの分数の中の分母を有理化します。
3+131=(3+1)(3+1)(31)(3+1)=(3+1)231=3+23+12=4+232=2+3\frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{(\sqrt{3}+1)^2}{3-1} = \frac{3+2\sqrt{3}+1}{2} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3}
313+1=(31)(31)(3+1)(31)=(31)231=323+12=4232=23\frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{(\sqrt{3}-1)^2}{3-1} = \frac{3-2\sqrt{3}+1}{2} = \frac{4-2\sqrt{3}}{2} = 2-\sqrt{3}
次に、これらの結果を元の式に代入して計算します。
(2+3)2+(23)2=(4+43+3)+(443+3)=7+43+743=14(2+\sqrt{3})^2 + (2-\sqrt{3})^2 = (4 + 4\sqrt{3} + 3) + (4 - 4\sqrt{3} + 3) = 7 + 4\sqrt{3} + 7 - 4\sqrt{3} = 14

3. 最終的な答え

14

「代数学」の関連問題

$a = -\frac{1}{3}, b = 2$ のとき、$\frac{1}{2}(a-b)(a+b) - \frac{1}{2}a(a-b)$ の値を求める問題です。

式の計算代入展開
2025/8/13

$a = -\frac{1}{3}$, $b = 2$ のとき、$(\frac{1}{2}a - b)(a + b) - \frac{1}{2}a(a - b)$ の値を求めなさい。 $x = \fr...

式の計算代入多項式
2025/8/13

与えられた条件を満たす二次関数を求めます。 (1) 頂点が点 $(-2, 1)$ で、点 $(-1, 4)$ を通る。 (2) 軸が直線 $x=2$ で、2点 $(-1, -7)$, $(1, 9)$...

二次関数放物線頂点展開連立方程式
2025/8/13

40℃において、与えられた比例式を解き、$x$の値を求める問題です。比例式は次の通りです。 $\frac{100 \times \frac{110}{210} - x}{100 - x} = \fra...

比例式方程式計算
2025/8/13

長方形の厚紙ABCDがあり、AB=$x$ cm、AD=$2x$ cmです。この厚紙の4つの角から一辺が2 cmの正方形を切り取り、折り曲げて直方体の容器を作ります。この直方体の容積が96 $cm^3$...

二次方程式体積図形問題方程式
2025/8/13

与えられた2つの2次不等式を解きます。 (1) $x^2 + 3x + 1 > 0$ (2) $x^2 - 6x + 4 < 0$

二次不等式解の公式不等式の解法
2025/8/13

(2) 関数 $f(x) = 3^x$ と $g(x) = \log_3 |x|$ に対して、合成関数 $g(3f(x))$ と $f(3g(x))$ を求める。 (3) 関数 $f(x) = \fr...

関数合成関数対数関数分数関数方程式解の公式
2025/8/13

問題6の(1), (2), (3), (4), (5), (6)の式をそれぞれ因数分解する問題です。

因数分解多項式
2025/8/13

与えられた3つの式をそれぞれ因数分解します。 (1) $(a-b)^2 - 11(a-b) + 18$ (2) $a(x+y) - 3x - 3y$ (3) $(2x-1)^2 - (x+6)^2$

因数分解多項式
2025/8/13

与えられた式 $(2x-1)^2 - (x+6)^2$ を展開し、簡略化せよ。

展開式の簡略化多項式
2025/8/13