半径 $r$ cm、中心角 $a^\circ$ の扇形の弧の長さ $l$ cmについて、 (1) $l$ を求める公式を作りなさい。 (2) (1)で求めた公式を変形して、$a$ を求める公式を作りなさい。

幾何学扇形弧の長さ公式角度
2025/8/13

1. 問題の内容

半径 rr cm、中心角 aa^\circ の扇形の弧の長さ ll cmについて、
(1) ll を求める公式を作りなさい。
(2) (1)で求めた公式を変形して、aa を求める公式を作りなさい。

2. 解き方の手順

(1) 扇形の弧の長さは、円周の長さに中心角の割合をかけたものです。円周の長さは 2πr2\pi r であり、中心角の割合は a360\frac{a}{360} です。したがって、
l=2πr×a360l = 2\pi r \times \frac{a}{360}
l=2πra360l = \frac{2\pi r a}{360}
l=πra180l = \frac{\pi r a}{180}
(2) (1)で求めた公式 l=πra180l = \frac{\pi r a}{180}aa について解きます。まず、両辺に180をかけます。
180l=πra180l = \pi r a
次に、両辺を πr\pi r で割ります。
a=180lπra = \frac{180l}{\pi r}

3. 最終的な答え

(1) l=πra180l = \frac{\pi r a}{180}
(2) a=180lπra = \frac{180l}{\pi r}

「幾何学」の関連問題

与えられた条件を満たす方程式または座標を求める問題です。 (1) 2点 $A(-1, 2)$ と $B(7, 6)$ に対して、線分 $AB$ を $1:3$ に内分する点の座標を求める。 (2) 2...

座標平面直線内分点点と直線の距離接線
2025/8/13

三角関数の値を求める問題です。具体的には、以下の8つの値を求める必要があります。 (1) $\sin \frac{2}{3}\pi$ (2) $\sin \frac{5}{4}\pi$ (3) $\s...

三角関数三角比角度ラジアンsincostan
2025/8/13

問題は、(1)から(5)までの角度を度数法から弧度法に変換し、(6)から(10)までの角度を弧度法から度数法に変換することです。

角度度数法弧度法三角比
2025/8/13

(1)から(5)までの角度を度数法から弧度法に変換し、(6)から(10)までの角度を弧度法から度数法に変換する問題です。

角度弧度法度数法三角関数
2025/8/13

与えられた円 $x^2 + y^2 = r^2$ 上の点 $(x_1, y_1)$ における接線の方程式を求める問題です。 与えられた10個の円と点について、接線の方程式をそれぞれ求めます。

接線座標平面方程式
2025/8/13

与えられた円 $x^2 + y^2 = r^2$ 上の点 $(x_1, y_1)$ における接線の方程式を求める問題が10個あります。

接線座標平面
2025/8/13

円と直線の共有点の座標を求める問題です。具体的には以下の4つの問題があります。 (1) $x^2 + y^2 = 4$, $y = -2x - 4$ (2) $x^2 + y^2 = 2$, $y =...

直線共有点座標
2025/8/13

与えられた円と直線の共有点の座標を求める問題です。具体的には、以下の4つの問題があります。 (1) $x^2 + y^2 = 16$, $y = x - 4$ (2) $x^2 + y^2 = 25$...

直線共有点座標
2025/8/13

与えられた円の方程式から、円の中心の座標と半径を求める問題です。具体的には、以下の8個の円の方程式について、それぞれ中心の座標と半径を求めます。 (1) $x^2 + y^2 - 2x = 0$ (2...

円の方程式平方完成座標
2025/8/13

与えられた各円の方程式から、円の中心の座標と半径を求める問題です。円の方程式は一般に $(x-a)^2 + (y-b)^2 = r^2$ の形で表され、ここで $(a, b)$ が円の中心の座標、$r...

円の方程式平方完成座標
2025/8/13